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A DOWKER PRODUCT

BY

AMER BESLAGIC

Abstract. 0 implies that there is a (normal) countably paracompact space X such

that X2 is normal and not countably paracompact.

1. Introduction. A normal space which is not countably paracompact is called a

Dowker space. It is well known that a normal space X is countably paracompact iff

X X (w + 1) is normal iff, for every decreasing sequence (F„: n ez co) of closed

subsets of X such that C\{Fn: n g u} = 0, there is a sequence (On: n ez co) of open

sets such that C\{On: n ez co} = 0 and, for every n ez co, F„ c On. There is essentially

only one known Dowker space in ZFC, constructed by Rudin [15], although

numerous Dowker spaces have been constructed beyond ZFC (see [18] for more on

this).

Rudin and Starbird have proved that if X is countably paracompact (paracom-

pact, collectionwise normal), M metric, and X X M normal, then X X M is count-

ably paracompact (paracompact, collectionwise normal), see [20]. At that time it was

already known that under MA + -,CH there is a Lindelof space X such that X2 is

normal but not collectionwise normal [11]. (There also is, in ZFC, a Lindelof space X

such that X2 is collectionwise normal but not paracompact [13].) So they asked

whether the product of two countably paracompact spaces can be Dowker. This was

answered affirmatively by Wage [21] who gave, under the Continuum Hypothesis, an

example of countably paracompact X and Y such that X X Y is Dowker. He used a

space constructed in [5]. However, he never published details of his construction.

Here we assume (}* and construct a countably paracompact space X such that X2

is Dowker (§2). In §3 we show how the construction from §2 can be modified to

give, for any n G co, a space X such that X" is countably paracompact and X" + 1 is

Dowker. All our results follow from <> only; see §5.

The concept of a Dowker space can be generalized a bit.

1.1 Definition. An open cover {Va: a ez k} of a space X is a shrinking of the

family { Ua: a g k } of subsets of X iff, for every a ez k, Va c Ua.

A space X is shrinking iff every open cover of X has a shrinking.    □

Observe that a Hausdorff space X is normal iff every open cover of size 2 has a

shrinking, and that a Hausdorff space X is normal and countably paracompact iff

every countable open cover of X has a shrinking. Also, notice that a space X is

shrinking iff for every open cover {Ua: a g k} of X there is a closed cover {Fa:

a G k } such that Fa c Ua for every a g k.
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In ZFC, there is only one known type of normal spaces that are not shrinking [17].

For more on shrinking spaces see [19].

It is known that the normal product of a shrinking space and a metric space is

shrinking [1, 3.6]. Our examples are shrinking spaces so it is consistent that there is a

shrinking space X such that X2 is normal but not shrinking.

1.2 Definition. A normal space X is K-Dowker iff k is the minimal cardinality of

an increasing open cover of X which does not have a shrinking.   □

Thus co-Dowker is the same as Dowker. For each regular cardinal k we essentially

know exactly one K-Dowker space in ZFC [17]. Call a space K-shrinking iff every

open cover of cardinality k has a shrinking. Hence a normal space is co-Dowker iff it

is not co-shrinking. But this does not generalize: for a regular infinite k, <> ++ on k +

implies that there is a normal, not k +-shrinking, not ic+-Dowker space [2]. For more

on K-Dowker spaces, see [19].

In §4 we show, using the construction from §3, how to get for each regular

uncountable k and n ez co, a space A'such that X" is shrinking but X"+l is K-Dowker.

Recall that a space X is called a P-space iffXxM is normal for every metric

space M. Our examples are R-spaces; thus under <>*, there is a R-space X such that

X2 is normal but not a R-space.

We use an Ostaszewski technique [10] to construct our spaces. The result in §4

implies the results in the preceding sections, but we decided to present the result in

§2 in detail, as it is the most interesting and the least technical case. §§3 and 4 are

rather sketchy; in them we mainly emphasize the differences from the second

section.

Any undefined notion or fact that is used without mention can be found in one of

[4 and 7]. Many more facts about normality in products can be found in [14 and 16].

2. A Dowker square. We first state a consequence of <f>* which is then used to

construct a countably paracompact space X such that X2 is Dowker.

2.1 Definition. 0* is the statement: There is a sequence (j/a: a g co,) such that

(i) for every a, s/a is a countable family of subsets of a X co,

(ii) for every X c ux X co, there is a closed and unbounded C c coj such that, for

every a ez C, X n (a X co) G s/a.

The sequence (s?a: a ez co,) is called a ff* sequence.    □

Our definition of <f>* is not the usual one but it is clearly equivalent to it. 0*

holds in the constructible universe L.

Following [3, 6, and 12] we have

2.2 Definition. A set lc (co, X co)2 is 2-uncountable iff, for every a ez co,,

Xn [(co,\a) X co]2 # 0.    a

Let F={aGco1: cf(a) = co}. Also, if B c X X Y, let dom(R) = {x ez X:

3y((x, y) ez B)) and ran(R) = {y g Y: 3x((x, y) ez B)}, and if a set is closed

and unbounded, we say that it is a cub.

2.3 Definition. A* is the statement: There are sequences (A°a: a G E), (Ala:

a ez E), and (Ba: a ez E) such that, for a ez E,

(i) A°a and A\ are subsets of a X co,

(ii) Ra is a subset of (a X co)2.
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If R° = dom(Ra) and Bla = xan(Ba) for each a ez E, then

(iii) ran(Ra°) U ran(R^) is finite,

(iv) for every B < a, (A°a U A\ U B° U Bla) n (B X co) is finite,

(v) A°, A\, and B° U B\ are pairwise disjoint,

(vi) for every uncountable X cz (co, X co) there is a cub C ez E such that, for every

a ez C, X n A°a and X n /I1,, are infinite,

(vii) for every pair (Jf, Y) of 2-uncountable subsets of (ux X co)2, there is an

a ez E such that, for every B < a, X n [(a \ fi) X co]2 n R„ # 0 and fnfi.n

[(a\fi)Xeo]2#0.    □

2.4 Lemma. <0* implies A*.

Proof. Let (s/a: a g co,) be a 0* sequence. Since <>* implies 0, there is a

sequence ((Ba0, Ral): a g co,) of pairs of subsets of (ux X co)2 such that, for every

pair (X, Y) of subsets of (co, X co)2, there is a stationary S c co, such that, for

every a G 5, X n (a X co)2 = Ra0 and 7 n (a X co)2 = Raa.

For a ez E, let

<={ylG<:Vi3<a(^ n[(a\i8) X co] # 0)}

and

^„ = {*..,: / e 2 A Vfl < «(RQ, n[(«\fi) X co]2 * o)

A (|ran(dom( !>„,,)) U ran(ran(Ra,))| < co)}.

List jrfaU £8a as (F„: n ez co) in such a way that each member of 38 a is listed

infinitely many times, and that for every A ez srfa there are infinitely many even and

infinitely many odd n's for which Fn = A.

By induction on n ez co, pick/?„ G F„ and an ez a such that

(1) sup„ a„ = a,

(2) if k < n then />^ g (a„ x co) or pk ez (a„ X co)2, and p„ ez (a\an) X co or

ftel(«\Oxw]2.
Let yl° = {pn: n is even and Fn ez s/a), A\ = {pn: n is odd and F„ ez s/a}, and

Ba={pn:Fnez38a}.

Now we show that these ^4's and R's satisfy Definition 2.3. Conditions (i)-(v)

hold trivially. For (vi), ifXc(co1Xco)is uncountable, fix a cub C0 c E so that if

a ez C0 then, for every B < a, X n [(a \ B) X co] # 0. Let Cx be a cub such that if

a ez Cx then X n (a X co) G j^a. Then C = C0 n C, shows that (vi) holds.

For (vii), observe that ifA'c(co,Xco)2is 2-uncountable then there is a n ez co

such that X C\ (co, X n)2is 2-uncountable. So we may assume that (X, Y) from (vii)

is such that there is an n ez u with X,Y cz (ux x n)2. Fix a cub C cz E such that if

a G C then, for every fi < a, Xn [(a\B) X co]2 * 0 and Y n [(ex\fi) X co]2 # 0.

Let Sccjj be stationary such that, for every a ez S, X n (a X co)2 = Ba0 and

Y n (a X u)2 = Bal. Then for any a ez S n C, X n R„ and fni,, are as required.

□
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2.5 Theorem (A*). There is a Hausdorff, first countable, locally compact, shrinking,

P-space X such that X2 is collectionwise normal but not countably paracompact.

Proof. We construct two topologies t° and t1 on co, X co in such a way that

T0 = (co, X co, t°> and T, = (co, X co, t1) are Hausdorff, first countable, locally

compact, shrinking, R-spaces, and also make sure that T02, T0 X T,, and Tf are

collectionwise normal. At the same time we kill countable paracompactness of

T0 X Tx by showing that the diagonal {(x, y) ez T0 X Tx: x = y} is Dowker. Then

for X we take the free sum of T0 and T,.

By induction on a ez co,, for (a, n) ez co, X co and i ez 3 we construct families

{U(£„y k ez co} of subsets of (a + 1) X co such that if r'a is the topology on a X co

having {Uf-k: /cGcoA/?GaXco}asa (sub)basis then

(a) Ta is a Hausdorff topology on a X co,

(b) for all fi < a, (fi + 1) X co is closed in (a X co, Ta),

(c) for allp ez a x co, {Up'k: k G co} is decreasing,

(d) for allp ez a X co, {Uf,k: k G co} is a clopen basis forp consisting of compact

sets (in Ta),

(e) for all p ez a X co and k ez co, If,0-* U Upl'k c £//•*,

(f) for all (B, n) ez a X co, (V(0/n> n !/$„> c(B + l)x(n + 1).

Observe that (d) implies that, for all fi < a, fi X co is open in (a X co, tj), and

that (e) implies that t2 is coarser than both j° and rl, i.e. t2 cz Ta° n t^.

Topologies t' for / G 3 are defined by letting U{ Ta: a ez co,} be a basis for t'. The

topology t 2 helps us to carry the induction, and it plays a small role in the proof that

T0 X Tj is not countably paracompact.

It remains to define Up,k for / g 3, k ez co, and p ez ux x co. If a is a successor or

0, for / G 3 and n, k ez co let «V<'a*„> = ((a,/i)}. It is easy to check that all induction

hypotheses are satisfied.

Let (A°a: a ez E), (A\: a g E), and (Ba: a ez E) be as in Definition 2.3. Recall

that R° = dom(R„) and B\ = ran(Ra). For a a limit, i.e. a ez E, pick na ez co such

that na > sup(ran(R°) U ran(R^)). Notice that na> O.lfn € {0, na), for i ez 3 and

k ez co let U{£ny = {(a,n)}. Let (ak: k ez co) be an increasing cofinal sequence in a.

The set D = A°a U A\ U R° U R^ is closed and discrete in (a X co, Ta2> by 2.3(iv)

and the fact that fi X co is open for every B < a. Since (a X u, t2) is metrizable and

locally compact, for each a ez D there is a compact clopen neighborhood Ud of d in

(a X co, Ta2> such that {Ud: d G D} is discrete in (a X w,t2) (hence discrete in

(a X co, t„) for any i ez 2), and such that if d = (B, n) and ak + 1 < B then

i7rf n [(ak + 1) X co] = 0 (by (b), this can be done). For i ez 2 and d ez D let

Uj = e7j'*, where A: G co is the least number for which Uj'k c Ud.

For k ez co define

t#,o>= ««.0>}U(U {£/<,:<*€= [(^U^JxKxco)]}),   and

c7(2aX>={(«,«a>}u(U{«V,:cfG[(Ra0URa)\(«,Xco)]}).
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For i g 2 and fcew define

U(a%= {<«,0>}u(lJ{t/J:ciG [i4'.\(«*X «)]}),    and

Ult.) = {<«."«>} u(lj{f/j: ciG [(^u Bla)\(ak X co)]}).

We now check that the induction hypotheses are satisfied. The condition (a) is

satisfied because of 2.3(v), and (b)-(e) are satisfied trivially. We check that (f) holds.

For n <2 (0, /»„}, (f) trivially holds at (a, n). Note that t7(°a'°0> n U{£0> = «a,0)}

by 2.3(v). To see that U^°„a) n U^y c (a + 1) X («a + 1), it is enough to show

that Ud° n Uf c (a + 1) X(na + l)°for d,eez B° U B\. Since t^° n (V,1 c Ud n

t7e, if c/ # e, c/,0 O l/,1 = 0, so assume d = e = (B, n) ez B^U Bla. But then t/<°3i„>

n (V^ c U$% n U^°n} c (fl + 1) X (n + 1) by (c) and (f) for (fl, «>, so since

na > n we have that £$,„> n (V^ c (a + 1) X (na + 1).

This finishes our construction of T0 and Tx, and we now check that they have all

of the desired properties. From now on i andy will stand for arbitrary members of 2.

Trivially, Tj is Hausdorff, first countable, and locally compact.

2.6 Lemma. Let ( Xn: n ez u} be a family of uncountable subsets of Tj. Then there is

a cub C c co, such that, for every a ez C and n ez co, (a, 0) is an accumulation point of

Xn. In particular, (C X {0}) c Cl{X„: n ez co}.

Proof. For each Xn fix a cub Cn cz co, satisfying 2.3(vi). Then C = C\neu C„ is as

required.   □

(1) Tj is normal.

Proof. Let X and Y be two closed disjoint subsets of Tj. By Lemma 2.6 we may

assume that X is countable, so there is an a G ux such that X c (a + 1) X co. Since

the subspace topology on (a + 1) X co is metrizable there is a clopen set U in

(a + 1) X co containing X such that U n Y" = 0. This U is clopen in Tj since

(a + 1) X co is.    □

(2) Every closed discrete subset of Tj is countable.

Proof. Let I c Tj. be uncountable. Let X0, Xx he two disjoint uncountable

subsets of X. By Lemma 2.6, X0 n Xx ¥= 0, hence X is not closed discrete.   O

(3) Tj is countably paracompact.

Proof. Let {Fn: n ez co} be a decreasing family of closed subsets of Tj such that

n„euF„ = 0. By Lemma 2.6 there is a k ez u such that Fk is countable. Let a ez eo,

be such that Fk cz a X co. Since a X co is open and metrizable, there are, for n > k,

open On containing Fn such that C\n>kO„ = 0. For n < k, let On = Tj. So Tj is

countably paracompact.   □

(4) Tj is shrinking.

Proof. Since Tj is normal and countably paracompact every open cover of

cardinality < co has a shrinking. Let {Ua: a ez co,} be an open cover of Tj. It suffices

to show that there is a closed cover {Fa: a ez co,} such that Fa cz Ua for every

a G coj.
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Define S = [t G Tj: \{a G ux: t ez Ua}\ < co}. List Tj\5 as (/„: a ez ux). For

a ez ux pick f(a) ez co, such that ta ez Uf(a) and, for every B < a, f(B) < f(a). Let

Ff°(a) = (?a}> and if fi e "i is not in the range of /, let Fg° = 0. Then for every

a G Wl, Fa° c Ua, andUaeU[Fa° = T,\S.

Observe that S is closed since Tj is first countable. For a ez ux, let Sa = S \ Ua.

Claim. There is an a G coj such that Sa is countable.

Proof. Assume not. Using Lemma 2.6 fix, for each a ez cox, a cub Ca c eo, such

that each point of Ca X {0} is an accumulation point of Sa. Let C be the diagonal

intersection of {Ca: a ez ux}; so C = (fi g co,: Va < B (B ez Ca)} is a cub subset

of coj. Since each 5a is closed, if fl g C then (fl,0) g C\a<BSa, hence (fi,0) £

Ua</3 £/a. So for B ez C, pick/^ = (a^, mB) ez S0 and yB> B such that/Tg g £/, and

<xB < B. This can be done since (fi, 0) is an accumulation point of S0. By the

pressing down lemma followed by an easy counting argument there are co, many B 's

with the same pB = p. But then this p is an element of S which is in uncountably

many Ufs. So there is an a such that Sa is countable.    □

We may assume that S \ U0 is countable. Fix a B ez ax such that (S\U0) cz B X u,

and let F0l = S n [(co, \ fl) X co] c UQ. Then F0l is closed since S is. For a > 0, let

Fj,1 = 0. Since metrizable spaces are shrinking there is a closed cover {F2: w e«,}

of (fl + 1) X co such that, for every a ez co,, Fa2 c Ua.

For a g co,, let Fa = Fa° U Fj,1 U F2. Then {Fa: a ez co,} is a closed cover of Tj

such that Fa c Ua for every a ez co,.    D

At this point we need

2.7 Lemma. Let (X,Y) be a pair of 2-uncountable subsets of Tj X T. Then there is

an a ez cox such that ((a, na), (a, na)) ez X nY.

Proof. Let a satisfy 2.3(vii). Then ((a, «„), (a, na)) ez X nf.   D

(5) Tj X Tj is normal.

Proof. Let X, Y be two closed disjoint subsets of Tj X Tj. Using Lemma 2.7 we

may assume that X is not 2-uncountable. Fix an a g co, so that A'c[((a + l)Xco)

X Tj] U [Tj X ((a + 1) X co)]. It follows from (8) that both ((a + 1) X co) X Tj and

Tj X ((a + 1) X co) are normal; however, for the convenience of the reader not

interested in R-spaces we give a direct proof of this fact in Lemma 2.8 below.

Assuming that ((a + l)Xco)XTj and Tj X ((a + 1) X co) are normal we show how

to separate X and Y by two disjoint open sets.

Sets [(«! \ (a + 1)) X co] X [(co, \ (a + 1)) X co], Tj X ((a + 1) X co), and ((a +

1) X co) X [(coj \(a + 1)) X co] partition Tj X Tj into pairwise disjoint clopen sets,

and in each of them we can separate X and Y (in the last two since they are normal

and in the first one since X does not intersect it); hence X and Y can be separated in

7j X Tj,

2.8 Lemma. Assume that X is normal and countably paracompact and Y is a

countable metric space. Then X X Y is normal.

Proof. For y ez Y let {Bn(y): n ez co} be a clopen decreasing basis for y. Let H

and K he two closed disjoint subsets of X X Y. Let tt: X X Y -» X be the projection

map. For.y G Y let F„(y) = tr(H n(X X B„(y))) n tr(K n(X X Bn(y))). Since
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{Bn(y): « g co} is decreasing, {Fn(y): n ez co} decreases, and since {Bn(y): n ez co}

is a basis for y, \~\nSuFn(y) = 0. Let {On(y): n ez co} be an open family in X such

that Fn(y) c On(y) for every n ez co and f)neaO„ = 0._

For n ez co and y ez Y let H„(y) = tr(H n(X X Bn(y)))\On(y) and Kn(y)

= tr(Kn(XX Bn(y))) \ On(y). Then H„(y) and 7r(A" n(AT X Bn(y))) are closed

disjoint subsets of X, so there is an open Un( y) such that Hn(y) c [/„(j>) c <V„(>')

c Ar\w(A: n(A' X fl„(_y))). Similarly, there is an open Vn(y) such that Kn(y) c

W) <= VjJ) c A^n(nB.W)).
Then<^ = {Un(y) X Bn(y): n ez co A y ez Y} and f~= {Vn(y) X Bn(y): n ez co A

j g Y} are countable open families in X X Y covering H and K, respectively, such

that, for every U g <^and V ez V, (U n K = 0 = H n F). Hence X X F is normal.

D

(6) Tj X Tj is collectionwise normal.

Proof. We show that every closed discrete subset of Tj X Tj is countable. This

shows that Tj X Tj is collectionwise normal since it is normal. Let X c 7jX T be a

2-uncountable subset of Tj X Tj. By an easy induction one picks two disjoint

2-uncountable X0, Xx cz X. By Lemma 2.7, X0 n Xx =£ 0 so X is not closed discrete.

Let X be an uncountable subset of Tj X Tj which is not 2-uncountable. Then there is

a p ez ux x co such that either X n (T, X {p}) or X n ({p} X Tj) is uncountable.

Then, by (2), X is not closed discrete.   □

(7) Tq X Tx is not countably paracompact.

Proof. We show that R = {(x, y) g T0 X Tx: x = y} is not countably para-

compact. As R is a closed subset of ((co, X u, t2})2 it is closed in T0 X Tx, hence

Tq X T, is not countably paracompact.

Since R is homeomorphic to osx X co having as a basis the family {U n V:

U ez t° a V ez r1}, we identify R with this space.

Foxn g co,letF„ = eo, X (co\«). Trivially, Fn+X cz FJoxn g co, andn„ea;F„ = 0.

The condition (f) implies that each Fn is closed. Next we show that there is no open

family {On: n ez co} such that D„e„ On = 0 and, for all n ez co, F„ c On. We need

2.9 Lemma. Te?r X be an uncountable subset of R and n ez co. Then there are an

a ez ux and an m > n such that (a, m) ez X.

Proof. Let X0 = {(x, x) ez T0X Tx. x ez X} and Xx = {((fi, n), (B, «>>: B ez

ux}. Both X0 and Xx axe 2-uncountable subsets of T0 X T,. By Lemma 2.7 there is an

a G Ul such that ((a, na), (a, na)> G cl^^^Xo) n cITqXTi(Xx). But then (a, na)

ez clR A'and «„ > n.   □

Assume that {On: n ez co} is an open family in R for which C\„eojO„ = 0 and

F„ c 0„ for every n ez co. There is an n ez co such that R \ <9„ is uncountable. Observe

that R\On is closed and R\On ez ux X n. By Lemma 2.9 there are an a g co, and

an m > n such that (a, m) ez R \ On = R \ On c cox X n. This contradiction finishes

the proof.    □

(8) Tj is a P-space.

Proof. This follows from Lemma 2.6 and Lemma 2.11 below. In order to be able

to use Lemma 2.11 in §4 we state it in a more general form than needed at this point.
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2.10 Definition. Let k be a cardinal. A space X is a trK-space iff, for every

paracompact space Y with character < k, X X Yis normal.   □

The following is Lemma 5 from [2].

2.11 Lemma [2]. Let X be a Hausdorff space and^ a family of subsets of X such that

C\{Fa: a ez k} ¥= 0 for any {Fa: a ez k} c & of cardinality < k. Also suppose that

M cz X and M £ ^implies there is a trK-space U which is clopen in X and contains M.

Then X is a trK-space.   □

We show that Tj is a w^-space and thus a R-space. Let J^= {X c Tj: A1 is

uncountable}. By Lemma 2.6 any countable subfamily {Fn: n ez co} of & is such

that (~){Fn: n ez co} # 0. If A' is a countable subset of Tj then, for some a ez wx,

X c (a + 1) X co and, by Lemma 2.8, (a + 1) X co is a wu-space.   □

2.12 Remarks. Lemma 2.8 follows from [9]; see also [14, 4.13]. We included a

short proof of it for the convenience of the reader.

One does not need Lemma 2.8 to show that Tj is a R-space. Lemma 2.11 holds if k

is replaced by co and trK by P. But then (a + 1) X co trivially is a R-space.

We should also note that Lemma 5 from [2] (our Lemma 2.11) is stated there only

for the case of wu-spaces, but the same proof as the one given there works for

arbitrary k.

The space X2 from Theorem 2.5 is strongly zero dimensional.   □

3. Products with more than two factors. Here we show how to generalize the

construction from the preceding section to get, for each n ez co, a space X such that

X" is countably paracompact and X"+l is Dowker.

We use a slightly more general consequence of <>* which we state for arbitrary

regular k > co in order to be able to use it in §4.

3.1. Definition. Let k be a cardinal and n ez co. A set X c (k + X k)" has the

n-size-K+iff, for every a ez K+, X n [(k+\ a) X k]" * 0.    □

Let k > co be a regular cardinal. Define E = {a ez k+: cf(ot) = k }. For k ez co and

/ G k, let itp (k + X k)* -» (k+X k) be the projection map onto the /th coordinate.

3.2 Definition. Let k 3s co be a regular cardinal and n ez co. A*(k+, n) is the

statement: There are sequences (s/Lm ot ez E) foxiezn + 1 and a sequence (3Sa:

a ez E) such that, for a ez E,

(i)s?a is a subset of (a X k)" for each i ez n + 1,

(ii) 38 a is a subset of (a X k)" + 1.

If for a g E and i6« + l, A'a = U{w,(-<): l e "} and Ra = \J{tr,(@a): I ez n

+ 1}, then, for a G E,

(iii)|ran(RJ|<K,

(iv) |[(U,6„+i A'a) U RJ n (fi X k)| < k for every B < a,

(v) the family {A'a: iG« + l}U{Ra} consists of pairwise disjoint sets,

(vi) there is a cub C c k+ for every X ez (k + x k)" which has «-size-K+ such that,

for every B ez C n E and every / g n + 1, if y < B, X n s/B' n [(B \ y) X k]" ¥= 0,

(vii) for every family & of cardinality < k whose members are subsets of

(k+X k)" + 1 of (n + l)-size-K+, there is a B ez E such that, for every X ez J^and

y < B, Xn3gBn[(B\y)XK]" + 1 * 0.    □
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3.3 Theorem (A*(co,, n)). There is a Hausdorff, first countable, locally compact

space X such that X" is a shrinking P-space, and X" + l is collectionwise normal but not

countably paracompact.

Proof. The construction is almost the same as the one in Theorem 2.5. We

construct n + 2 topologies t' on co, X co. Then we let Tj = (co, X co, t') for i ez n +

1, and define X to be the free sum of the Tj's.

For each p ez co, X co and /' ez n + 2 we construct a neighborhood basis {Uf-k:

k ez co} for p in t' as in 2.5. Conditions (a)-(d) are the same as (a)-(d) from 2.5. We

also have

(e) for all/7 g a X co and k ez co, U,G„ +,£/;•* c Upn+1'k,

(f) for all (fl, m) ez « x co, n,en+1t7$m) c (fl + 1) X (m + 1).

Let D = Ba U (U,e„+1^'a) and pick na > sup(ran(RJ). The construction of the

U 's is the same as in 2.5 except that for (a, 0) if i G n + 1 and k ez co we define

Ufa = {(«,0)} u(U(<7J: dez [(\J{A{:j G n + 1 A j * i})\(ak X co)]}).

Trivially each Tj is Hausdorff, first countable and locally compact. Let Tk stand

for an arbitrary product of k (not necessarily different) factors from {Tj: i G n + 1}.

3.4 Lemma, (i) Let k < n and let {Xj-. j ez co} be a family of k-size-ux subsets of Tk.

Then there is a cub C c co, such that, for every a ez C n E and j ez co, the point

p ez Tk having all its coordinates equal to (a, 0) is an accumulation point of Xj.

(ii) Let ^be a finite collection of (n + l)-size-ux subsets of Tn + 1. Then there is an

a ez E such that the point p ez T" + l with all its coordinates equal (a, na) is in D{ X:

Xez3?}.   □

By induction on k < n one shows (simultaneously) that Tk is normal and

countably paracompact. This is similar to 2.5(1), (3), and (6); by Lemma 3.4(i) every

countable family of closed subsets of Tk of k-size-ux has a nonempty intersection

and Lemma 2.8 (together with the induction hypothesis) shows that any subset of Tk

which does not have k-size-ux is contained in a clopen, normal, and countably

paracompact subspace of Tk. (For countable paracompactness, observe that by

applying Lemma 2.8 to X and Y X (co + 1) one concludes that X X Y is normal and

countably paracompact for normal countably paracompact X and metric countable

Y.) Then the normality of T" + 1 follows from Lemma 3.4(h), and since every closed

discrete subset of T" + 1 is countable, Tn + l is collectionwise normal. The diagonal R

of n,e„ + 1Tj is a closed Dowker subspace of n,e„ + ,Tj since by (f) and Lemma

3.4(h) the same argument as in 2.5(7) applies for R. By Lemma 2.11 and induction

on k < n, Tk is a R-space for k < n (for this note that the product of a R-space and

a metric space is a R-space).

We show that Tk is shrinking by induction on k < n. The proof is similar to 2.5(4)

so we use the same notation. Some Sa is not of /c-size-co,. Assume not. Then by

Lemma 3.4(i) we may assume that each Sa is a subset of the diagonal of Tk. Proceed

as in 2.5(4). To finish the proof that Tk is shrinking we use

3.5 Lemma. Let X be shrinking and Y a countable metric space. Then XX Y is

shrinking.
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Proof. Fox y g Flet {B^y): i ez co} be a clopen decreasing basis forj'. Let {c7a:

a ez X} he an open cover of A" X Y. For a ez X, i ez co, and y ez Y, let tVa'(y) be the

maximal open set in X such that £/„'( v) X Bt(y) c Ua, and define Fj(j) =

X\\J{Ufl(y): a G A}. By the countable paracompactness of X there are open

Ut(y) 3 F,(y) for i ez co, with ntSmU,(y) = 0. Let {Vf(y): a ez X) U {Fj(j)} be a

shrinking of {££(>>): a ez X) U {(^(j)}. Then {FaV» X R,(j): aGAA/GcoA.y

G 7} is an open cover of X X Y such that, for every y ez Y, i cz co, and a g A,

V^(y) X Bj(y) c [/a. Since X X Y is countably paracompact, the following trivial

fact [1, 3.1] finishes the proof:

3.6 Lemma [1]. Let Xbe K-paracompact, and [Ua: a ez X) and {Va B: a ez X A B ez

k } two open covers of X such that, for every a ez X and B ez k, VaB c Ua. Then {Ua:

a ez X} has a shrinking.    □

3.7 Remarks. It is known that if Ilieu)Tj is normal and Il,<fcTj is countably

paracompact (shrinking) for every k ez u, then FI,ewTj is countably paracompact

[14, 6.1] (shrinking [1, 3.4]). So Theorem 3.3 can not be pushed up to co.

Lemma 3.5 is a corollary of [1, 3.6]. We gave a direct proof of it since we need it in

the next section.    □

4. K-Dowker products. Assume that k is a regular uncountable cardinal. Recall that

a space is called a PK-space iff any intersection of < k open sets is open. P spaces

are usually called R-spaces, but here a R-space is a space which has the normal

product with each metrizable space.

4.1 Theorem (A*(k+, n)). There is a Hausdorff PK-space X of character k such that

X" is shrinking and K-paracompact, and X"+l is a collectionwise normal, < k-

paracompact, K-Dowker, P-space.

Proof. The proof is almost verbatim as Theorem 3.3. Here k plays the role of co

(hence "finite" becomes " < k"). We need [2, Lemma 6]. To state it, recall that a

(clopen) basis 38 for a space X is called non-Archimedean iff, for all A and R in 38,

either A c R or B ez A or A n B = 0.

4.2 Lemma [2]. Assume that Y = {ya: a ez k} is a Hausdorff space with a non-

Archimedean basis 38 such that for every a ez k there is a Ba ez 38 so that

(i)*, e Ba,

(ii) Ban {yB:B<a} = 0,and

(iii) {fl < a:yaezBp} is finite.

Then for every paracompact space X, X X Y is paracompact.    D

Now we check that, for all B ez k+ and z'Gn + l, Y"=(flXK, t^) satisfies the

conditions of Lemma 4.2. Being a regular RK-space of weight s£ k, Y has a

non-Archimedean basis 38. Let Y = {ya: a ez k} and pick Baez 33 so that if

ya = (y, S) then Ba cz (y x 8) U {(y, 8)} and Ba n {yB: B < a} = 0. These fia's

satisfy 4.2(iii), since if (iii) fails for some a ez k there is an increasing sequence (a,:

i ez co) with.ya g Ba for i ez co; hence Ba_+[ c Ra . So if ya. = (y„ 8,), then y, > y, + 1,

a contradiction.
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Also an obvious analogue of Lemma 3.4 holds (instead of co write k and instead of

"finite" write < k). We call this new version of Lemma 3.4 Lemma 4.3.

By induction on k ^ n we show that Tk is trK (Definition 2.10), K-paracompact and

shrinking.

Lemma 4.2 implies that if a ez k+ then (a X k, t„) X X is paracompact for every

paracompact space X. Hence if Tk is a 7^-space and a ez k+, then Tk X (a X k, t„)

is a 7^-space for any i ez n + 1.

In order to apply Lemma 2.11, let J* = {X cz Tk: Xhas rV-size-K+}. The induction

hypothesis, the preceding paragraph, and Lemma 4.3(i) show that & satisfies the

hypothesis of 2.11, so Tk is a 77K-space if k < n.

Observe that any wK-space is K-paracompact. To see this one can use a theorem of

Kunen which says that if k + 1 has the order topology then Ax(K + l)is normal

iff X is K-paracompact (for a proof see [14, 3.7 or 19, Theorem 2]) or use a theorem

of Morita: X X 2K is normal iff X is K-paracompact [8, 2.4]; see also [4, 3.8]. Hence

for k < n, Tk is K-paracompact.

To see that Tk is shrinking observe first that the proof of Lemma 3.5 shows that,

for every a ez k+, i ez n + 1, and k < n, Tk X (a X k, t„) is shrinking provided that

Tk is. Then the same argument as in 3.3 shows Tk shrinking for k < n.

Using Lemma 4.3(H), one shows that T"+1 is < K-paracompact and that n,-en+1 Tj

is K-Dowker. To see T"+1 is a R-space use Lemma 2.11 for k = co, and Lemma

4.3(h).   □

4.4 Remark. The spaces X"+l from this and the preceding section are strongly

zero dimensional.   □

5. Additional remarks. Ken Kunen observed that <j> suffices in order to construct

our examples. Instead of 2.3(vi) it is enough to have the following:

(*) There is a a-complete, normal filter J^on co, consisting of stationary sets such

that for every uncountable X ez (u>x X co) there is an F ez & so that, for every

a ez F, X n A°a and X n A\ are infinite.

To get (*) one uses the following unpublished result of Kunen.

5.1 Theorem (Kunen). 0 implies that there is a o-complete, normal filter &on ux

containing the cub filter, and a sequence {stfa: a ez uf) such that

(i) eachstfa is a countable family of subsets of a,

(ii) for every X cz ux, [a ez ux: X n a ez jfa) ez &'.

Proof. Let (Aa: a ez co,) be a <>-sequence on ux X oix; so each Aa is a subset of

a X a and, for every X c «, X «,, {a ez ux; X n (a X a) = Aa} is a stationary

subset of co,.

For a G coj let s4a = [dom(Aa n (a X {B})): B ez a}; and let £ = [S c ux.

3 X cz ux(S = {a ez co,: Xn a ei,})},

We show that if [Sa: a ez co,} c Sthen Aa^Sa = {fl g co,: Va < fl (B ez Sa)}

is stationary. This shows the existence of the required Jr.

Fix {A'a: a ez ux} so that for every a ez ux, Sa= {B ez co,: Xa n B ei^j.

Define X =l){XaX {a}: a ez co,} c co, X co1; and let S = {a ez «,: X n (a X a)

= Aa}. Then S is stationary, and S cz Aaeu Sa.   □
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Theorem 5.1 generalizes to show that if k is regular and E = {a£K+:c((a) = ic}

then O(L) implies A*(k+, n) for all n ez co (with the appropriate version of (*)

instead of 3.2(vi)).

It is easy to get A* by forcing; add co, Cohen reals. A similar forcing argument

gives A*(k+, n). This shows that A* does not imply CH. Forcing with countable

partial functions from co2 to 2 destroys A*; hence CH does not imply A*.

MA + -,CH implies -,A*. To see this recall that if js/is a family of cardinality co,

consisting of countable subsets of co, such that, for every A + B ezstf, A n B is

finite then MAU implies that there is an uncountable X ez co, such that X n A is

finite for every A ezs/ [22, Theorem 1]. So under MAU[ the condition 2.3(vi) cannot

hold (this can be shown directly, without using [22]).

If k is regular one can force: V n ez co -,A* (k+, n).
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