Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An irreducible representation of a symmetric star algebra is bounded
HTML articles powered by AMS MathViewer

by Subhash J. Bhatt PDF
Trans. Amer. Math. Soc. 292 (1985), 645-652 Request permission

Abstract:

A ${\ast }$-algebra $A$ is called symmetric if $(1 + {x^{\ast }}x)$ is invertible in $A$ for each $x$ in $A$. An irreducible hermitian representation of a symmetric ${\ast }$-algebra $A$ maps $A$ onto an algebra of bounded operators.
References
  • G. R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17 (1967), 91–114. MR 205102, DOI 10.1112/plms/s3-17.1.91
  • T. M. Apostol, Mathematical analysis, Addision-Wesley, Reading, Mass., 1971.
  • D. Arnal and J. P. Jurzak, Topological aspects of algebras of unbounded operators, J. Functional Analysis 24 (1977), no. 4, 397–425. MR 0435874, DOI 10.1016/0022-1236(77)90066-0
  • S. J. Bhatt, A note on generalized ${B^{\ast }}$-algebra. I; II, J. Indian Math. Soc. 43 (1979), 253-257; ibid. 44 (1980), 285-290.
  • Subhash J. Bhatt, Quotient bounded elements in locally convex algebras, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 102–113. MR 662365
  • —, Irreducible representations of a class of unbounded operator algebras, Sardar Patel Univ. Math. Tech. Rep. 9, 1983; Japanese J. Math. (to appear).
  • Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
  • P. G. Dixon, Generalized $B^{\ast }$-algebras, Proc. London Math. Soc. (3) 21 (1970), 693–715. MR 278079, DOI 10.1112/plms/s3-21.4.693
  • P. G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53–69. MR 291821, DOI 10.1112/plms/s3-23.1.53
  • S. Gudder and W. Scruggs, Unbounded representations of $\ast$-algebras, Pacific J. Math. 70 (1977), no. 2, 369–382. MR 482269
  • Atsushi Inoue, Unbounded representations of symmetric $*$-algebras, J. Math. Soc. Japan 29 (1977), no. 2, 219–232. MR 438136, DOI 10.2969/jmsj/02920219
  • —, On a class of unbounded operator algebras. I; II; III, Pacific J. Math. 65 (1976), 77-96; ibid. 66 (1976), 411-431; ibid. 69 (1977), 105-115.
  • Atsushi Inoue, Unbounded generalizations of left Hilbert algebras, J. Functional Analysis 34 (1979), no. 3, 339–362. MR 556260, DOI 10.1016/0022-1236(79)90081-8
  • Françoise Mathot, On the decomposition of states of some $\ast$-algebras, Pacific J. Math. 90 (1980), no. 2, 411–424. MR 600640
  • Robert T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85–124. MR 283580
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K10, 47D40
  • Retrieve articles in all journals with MSC: 46K10, 47D40
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 292 (1985), 645-652
  • MSC: Primary 46K10; Secondary 47D40
  • DOI: https://doi.org/10.1090/S0002-9947-1985-0808743-9
  • MathSciNet review: 808743