LOCAL AND GLOBAL ENVELOPES
OF HOLOMORPHY OF DOMAINS IN C^2

BY
ERIC BEDFORD

ABSTRACT. A criterion is given for a smoothly bounded domain D ⊂ C^2 to be locally extendible to a neighborhood of a point z_0 ∈ ∂D. (This result may also be formulated in terms of extension of CR functions on ∂D.) This is related to the envelope of holomorphy of the semitubular domain

Ω(Φ) = \{(z, w) ∈ C^2: \Re w + r^k ϕ(θ) < 0\},

where r = |z|, θ = arg(z). Necessary and sufficient conditions are given for the envelope of holomorphy of Ω(Φ) to be C^2. These conditions are equivalent to the existence of a subharmonic minorant for r^k ϕ(θ).

1. Introduction. Let us consider a smoothly bounded domain D ⊂ C^2 and ask whether D is locally extendible at p ∈ ∂D, i.e. for every open set U containing p do all holomorphic functions on D ∩ U extend holomorphically through p?

This question has been answered when ∂D is pseudoconcave and real analytic at p (see [3]) and when ∂D has so-called "type k" with k odd (see [2, 5, 10]). The question of local extension of holomorphic functions from D is essentially equivalent to the question of local extension of CR functions from ∂D (see [1, 8]). However, we do not discuss CR functions further since our contribution is to deal with the geometric structure of certain envelopes, and we would like our presentation to be as self-contained as possible.

We may make a holomorphic change of coordinates (z, w) in a neighborhood of p such that p = (0, 0), w = u + iv, and that ∂D is given near p by the equation u + p_k(z) + R(z, v) < 0, where

p_k(z) = \sum_{j=1}^{k-1} a_j z^j \bar{z}^{k-j}

is a real, homogeneous polynomial of degree k, and the remainder is given by

(1) \quad R(z, v) = O(v^2 + |vz| + |z|^{k+1})

Received by the editors July 13, 1984 and, in revised form, February 5, 1985.
1980 Mathematics Subject Classification. Primary 32D10; Secondary 31A05, 30D99.
Key words and phrases. Envelope of holomorphy, local extendibility, subharmonic minorant, CR extendibility.

Research supported in part by the NSF.
With a holomorphic change of variables \(w' = w + \alpha w^2 + \beta zw, \quad z' = z, \quad \partial D \) can be given by
\[
u + c v^2 + R'(z, v) + p_k(z) < 0,
\]
where \(c \in \mathbb{R} \) is arbitrary, and
\[
R'(z, w) = O \left(|v|^3 + |vz|^2 + |z|^{k+1} \right).
\]
We will be interested in domains that satisfy the following stronger condition: For any \(\varepsilon > 0 \), there exists \(c > 0 \) such that
\[
(2) \quad |R'(z, v)| = O \left(cv^2 + \varepsilon |z|^k \right).
\]
If (2) holds, then for every \(\varepsilon > 0 \), there exists \(\eta > 0 \) and a change of coordinates as above such that
\[
(3) \quad \{(z, w) \in \mathbb{C}^2 : |(z, w)| < \eta \} \cap D \subset \left\{ u + p_k(z) < \varepsilon |z|^k \right\}.
\]
Writing \(z = re^{i\theta} \) and \(p_k(z) = r^k \Phi(\theta) \), we see that the local study of \(D \) at \((0, 0) \) is related to the domain
\[
\Omega(\Phi) = \{(z, w) \in \mathbb{C}^2 : \text{Re} w + r^k \Phi(\theta) < 0\}.
\]
To make the connection between \(D \) and \(\Omega(\Phi) \), we will need to discuss (global) envelopes of holomorphy. The envelope of holomorphy \(E(D) \) of a domain \(D \subset \mathbb{C}^n \) is a Riemann domain \(\pi : E(D) \to \mathbb{C}^n \) with \(i : D \to E(D) \) and \(E(D) \) is the minimal domain of holomorphy such that every function \(f \in \mathcal{O}(D) \) extends holomorphically to \(E(D) \). A convenient method for staying within the class of domains in \(\mathbb{C}^n \) while taking envelopes is to consider \(D \) which are starshaped with respect to the origin, i.e., \(\delta_t(D) \subset D \), where \(\delta_t(z) = (tz_1, \ldots, tz_n), \quad 0 \leq t \leq 1 \). If \(D \subset \mathbb{C}^n \) is starshaped, then the envelope is a starshaped domain in \(\mathbb{C}^n \) with \(D \subset E(D) \subset \mathbb{C}^n \). To prove this assertion it suffices to show that the projection \(\pi \) is one-to-one. The mapping \(\delta_t \) has a holomorphic continuation to a map \(\tilde{\delta}_t : E(D) \to E(D) \). We note that \(\pi \tilde{\delta}_t = \delta_t \pi \), \(\tilde{\delta}_1 \) is the identity map, and \(\tilde{\delta}_0 = \lim_{t \to 0} \tilde{\delta}_t \) is the constant \(i(0) \). Let \(z_1, z_2 \in E(D) \) be points such that \(\pi(z_1) = \pi(z_2) \), and let \(\sigma_j, \quad j = 1, 2, \) be the path given by \(\gamma_j(t) = \delta_t(z_j), \quad 0 \leq t \leq 1 \).

Now \(\sigma_1 \) and \(\sigma_2 \) project under \(\pi \) to the same path in \(\mathbb{C}^n \), and \(\gamma_1(0) = \gamma_2(0) = i(0) \). Since \(\pi \) is locally invertible, the paths \(\sigma_1 \) and \(\sigma_2 \) coincide, and thus \(z_1 = \gamma_1(1) = \gamma_2(1) = z_2 \).

It follows (e.g. from a result of Docquier and Grauert [7]), that if \(D \) is starshaped, then it is a Runge domain, i.e. every holomorphic function on \(D \) may be uniformly approximated by polynomials on compact subsets.

The domain \(\Omega(\Phi) \) is invariant under the transformations
\[
(4) \quad (z, w) \to (z, w + \xi), \quad \xi \in \mathbb{C}, \text{Re} \xi < 0,
\]
\[
(5) \quad (z, w) \to (t z, r^k w), \quad 0 < t < \infty.
\]
The envelope of holomorphy has the same invariance and is thus given by
\[
E(\Omega(\Phi)) = \{(z, w) \in \mathbb{C}^2 : \text{Re} w + r^k \Phi(\theta) < 0\} = \Omega(\Phi),
\]
where \(r^k \Phi(\theta) \) is the greatest subharmonic minorant of \(r^k \Phi(\theta) \). (This is a special case of a result on semitubular domains, see [6].)
We may approximate $\Omega(\Phi)$ by the truncated domain

$$\Omega_\lambda(\Phi) = \Omega(\Phi) \cap \{|z| < \lambda, |u| < \lambda^k, |v| < c\lambda^k\}$$

for $0 < \lambda < \infty$. Since $\Omega_\lambda(\Phi)$ is starshaped with respect to $(0, -c\lambda^k/2)$ for c sufficiently large, the envelope is again starshaped. Further, $\Omega_\lambda(\Phi)$ is mapped biholomorphically to $\Omega_\lambda(\Phi)$ by the transformation (5), and so $E(\Omega_\lambda(\Phi))$ is also mapped to $E(\Omega_\lambda(\Phi))$. Thus

$$E(\Omega(\Phi)) = \bigcup_{\lambda} E(\Omega_\lambda(\Phi)),$$

and so $(0,0) \in E(\Omega(\Phi))$ if and only if $(0,0) \in E(\Omega_\lambda(\Phi))$ for all λ.

The question of local extendibility of D at $(0,0)$ is tied to the global question for $\Omega(\Phi)$: Does $(0,0)$ belong to the envelope of holomorphy $E(\Omega(\Phi))$ of $\Omega(\Phi)$? There are two possibilities:

(i) $(0,0) \in E(\Omega(\Phi))$, and in this case $E(\Omega(\Phi)) = C^2$.

(ii) $(0,0) \notin E(\Omega(\Phi))$, and $E(\Omega(\Phi)) = \Omega(\tilde{\Phi})$ with $\tilde{\Phi}$ not identically $-\infty$.

Proposition. If there exists $\varepsilon > 0$ such that $E(\Omega(\Phi + \varepsilon)) = C^2$, then for all open U containing $(0,0)$, every analytic function on $U \cap D$ extends analytically to a neighborhood of $(0,0)$.

Conversely, if D satisfies (2), and if $E(\Omega(\Phi - \varepsilon)) \neq C^2$ for some $\varepsilon > 0$, then there exists $\eta > 0$ and a function

$$f \in \mathcal{O}(D \cap \{(z,w) \mid |n| < \eta\})$$

which cannot be extended holomorphically past $(0,0)$.

Proof. If $(0,0)$ is in the envelope of $E(\Omega(\Phi + \varepsilon))$, there is a compact $K \subset \Omega(\Phi + \varepsilon)$ such that $|f(0,0)| \leq |f|_K$ for all $f \in \mathcal{O}(\Omega(\Phi + \varepsilon))$. Since K is compact, we may shrink ε if necessary, so that $K \subset \omega_{\varepsilon}$, where

$$\omega_{\varepsilon} = \left\{u + p_k(z) + \varepsilon|z|^k + \varepsilon|v| \mid \right\} < 0.$$

By (1), we may choose η sufficiently small such that $D \supset \{(z,w) \mid < \eta\} \subset \omega_{\varepsilon}$. Now ω_{ε} is invariant under the transformation (5), so we may apply (5) to K with t small to have $K \subset \{(z,w) \mid < \eta\} \cap \omega_{\varepsilon}$.

Finally, since $D \cap \{(z,w) \mid < \eta\}$ is starshaped for η small, it is Runge. Thus, $f \in \mathcal{O}(D \cap \{(z,w) \mid < \eta\})$ may be approximated by polynomials uniformly on K. Since $(0,0)$ is in the hull of K, we may extend f past $(0,0)$.

Now we prove the converse statement. If D satisfies (2), then we have (3), and so for $\Psi = \Phi - \varepsilon$

$$D \cap \{(z,w) \mid < \eta\} \subset \Omega(\tilde{\Psi}).$$

Since $\Omega(\tilde{\Psi})$ is a domain of holomorphy there exists $f \in \mathcal{O}(\Omega(\tilde{\Psi}))$ which cannot be continued past $(0,0)$.

Remarks. The first part of the Proposition can be used to give sufficient conditions for local extension of functions from domains $D \subset C^n$. For this, let P be a complex 2-plane intersecting ∂D transversally at $z_0 \in \partial D$. If $D \cap P$ satisfies the
first hypotheses of the Proposition in a neighborhood of \(z_0 \) in \(P \), then there is a compact \(K \subset D \cap P \) such that \(z_0 \) is in its polynomial hull. For \(\varepsilon > 0 \) sufficiently small, a closed \(\varepsilon \)-neighborhood \(K^\varepsilon \) of \(K \) is contained in \(D \). Since \(K^\varepsilon \) contains all \(\varepsilon \)-translates of \(K \), the polynomial hull of \(K^\varepsilon \) contains all \(\varepsilon \)-translates of \(z_0 \), i.e. an \(\varepsilon \)-neighborhood of \(z_0 \). Thus if we have local extension in a 2-dimensional slice of \(D \), we have local extension from \(D \).

By writing the Laplacian in polar coordinates,
\[
\Delta = \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} + \frac{\partial^2}{\partial \theta^2},
\]
we see that \(\Delta(r^k\Phi(\theta)) \geq 0 \) if and only if \(\mathcal{L}\Phi \geq 0 \), where \(\mathcal{L} = d^2/d\theta^2 + k^2 \). Of course, \(\mathcal{L}\psi = 0 \) if and only if \(\psi(\theta) = c\sin(k\theta) + d\cos(k\theta) \) and in this case \(r^k\psi(\theta) = \text{Re}((d - ic)z^k) \). The intervals in \(\theta \) where \(\Phi \) is positive or negative are of some importance. If \(\mathcal{L}\Phi > 0 \), then the intervals where \(\{\Phi < 0\} \) have length \(< \pi/k \) and the intervals where \(\{\Phi > 0\} \) have length \(> \pi/k \). This follows from (10) below.

It is also useful to adjoin nearby intervals.

Definition. Given an open set \(\mathcal{O} \subset \mathbb{R} \), the **amalgamated component** \(\tilde{I} \) of an interval \(I \subset \mathcal{O} \) is the smallest connected, open interval \(\tilde{I} \supseteq I \) with the property: If \(J \subset \mathcal{O} \) is an open interval with \(\text{dist}(J, I) < \pi/k \), then \(J \subset \tilde{I} \).

Definition. An upper semicontinuous periodic function \(\Phi \) on \(\mathbb{R} \) with period \(2\pi \) has a **wide (amalgamated) sector** if either
1. \(0 < k < 1/2 \), and \(\Phi(\theta) < 0 \) for some \(\theta \), or
2. \(k > 1/2 \), and there exist \(c_1, c_2 \in \mathbb{R} \) and \(\varepsilon > 0 \) such that an (amalgamated) component of
\[
\mathcal{O}(\varepsilon, c_1, c_2) = \{ \theta \in \mathbb{R} : \Phi(\theta) + \varepsilon + c_1\sin(k\theta) + c_2\cos(k\theta) < 0 \}
\]
has length \(\geq \pi/k \).

Note that the length will be \(> \pi/k \) if we take \(\varepsilon > 0 \) smaller. By this same remark we see also that if \(\Phi \) is continuous and has no wide sectors, then for \(0 < c < \infty \), there exists \(\varepsilon_0 > 0 \) such that every connected component of \(\mathcal{O}(\varepsilon, c_1, c_2) \) has length \(\leq \pi/k - \varepsilon_0 \) if \(|c_1| + |c_2| < c \) and \(0 < \varepsilon < \varepsilon_0 \).

Theorem. Let \(\Phi \) be periodic and u.s.c. on \([0, 2\pi] \). Then the envelope of holomorphy \(E(\Omega(\Phi)) = C^2 \) if and only if \(\Phi + \varepsilon \) has a wide amalgamated sector for some \(\varepsilon > 0 \).

Remark. The “only if” part of the Theorem is easily seen. If \(E(\Omega(\Phi)) \neq C^2 \), then there is a subharmonic \(r^k\Phi(\theta) \leq r^k\Phi(\theta) \). Thus each interval of \(\{\Phi + \varepsilon < 0\} \) lies in an interval of \(\{\Phi + \varepsilon < 0\} \), which has length \(< \pi/k \), since \(\mathcal{L}(\Phi + \varepsilon) > 0 \). Further, since the sectors of \(\{\Phi + \varepsilon < 0\} \) are separated by a distance \(> \pi/k \), the amalgamated components of \(\{\Phi + \varepsilon < 0\} \) lie in the components of \(\{\Phi + \varepsilon < 0\} \).

Remark. The works \([2 \text{ and } 9, 10]\) use the weaker “sector property”, which is just that \(\Phi \) has a wide sector. We note that if \(\Phi \) does not have the sector property, and if \(I_1 \) and \(I_2 \) are intervals of \(\mathcal{O}(\varepsilon, c_1, c_2) \), and if \(\text{dist}(I_1, I_2) < \pi/k \), then \(I_1 \cup I_2 \) is contained in an interval of length \(< \pi/k \).

(To see this, we may assume, to the contrary, that \(0 \in I_1 \) and \(\pi/k \in I_2 \). Then we make \(c_1 \) very large and negative so that \([0, \pi/k] \subset \mathcal{O}(\varepsilon, c_1, c_2) \).)
From this we conclude that if Φ has the sector property, and if $\mathcal{O}(\varepsilon, c_1, c_2)$ contains no more than two intervals (for all ε, c_1, c_2), then Φ has a wide amalgamated sector. The case $k = 4$, which was treated in [2], is a special case of this situation.

Acknowledgement. We wish to thank J.-P. Rosay for several stimulating conversations on this material, and we are grateful to J. E. Fornaess for a timely remark. Fornaess and Rea have recently obtained related results [11] (independently of our work) using methods of [4]. This paper was written while the author was visiting the University of North Carolina, and he is grateful for their hospitality.

2. Construction of the envelope. Since $r^k \Phi(\theta)$ is subharmonic and constant on the sets $\{\theta = \text{const}\}$, it follows that Φ is bounded. Further, since $\mathcal{L}\Phi \geq 0$, we have $\Phi'' \geq -\text{const}$, and so $\Phi \in C^1$. Thus if the envelope $E(\Omega(\Phi)) \neq C^2$, and if $k > 1$, the boundary $\partial E(\Omega(\Phi))$ is C^1 smooth. In general, however, $\Phi \notin C^2$.

We may approximate $\Phi + \delta$ from below by $\bar{\Phi} + \delta$, where $\bar{\Phi} = \Phi * \chi_\varepsilon$ is a usual smoothing in θ, and $0 < \delta < \delta$, $\lim_{\varepsilon \to 0} \delta = \delta$. Thus

$$
(\Phi + \delta)(\theta) = \sup \{ h(\theta) : h \text{ is of class } C^2, h \leq \Phi + \delta, \mathcal{L}h \geq 0 \}.
$$

Remark. In terms of the envelope (6) our question is whether the competing family of subsolutions is nonempty. Thus an alternative statement of our Theorem is: $r^k \Phi(\theta)$ has a subharmonic minorant if and only if $\Phi(\theta) + \varepsilon$ does not have a wide amalgamated sector for any $\varepsilon > 0$.

The envelope formulation (6) also suggests the structure of $\bar{\Phi}$:

$$
\mathcal{L}\bar{\Phi} = 0 \quad \text{on} \quad \mathcal{O} = \{ \bar{\Phi} < \Phi \},
$$
$$
\Phi = \bar{\Phi} \quad \text{and} \quad \nabla \Phi = \nabla \bar{\Phi} \quad \text{on} \quad \partial \mathcal{O}.
$$

We will construct Φ in the manner suggested by Figure 1. If $E = \{ \mathcal{L}\Phi < 0 \}$ is the set where the Levi form is negative, we must have $E \subset \{ \bar{\Phi} < \Phi \}$, and Φ is obtained by patching solutions ψ_j of $\mathcal{L}\psi_j = 0$ onto Φ so that they satisfy (7) and (8) above.

The last feature of the construction we shall require is

$$
\text{each interval in } \mathcal{O} = \{ \Phi < \bar{\Phi} \} \text{ has length } < \pi/k.
$$

![Figure 1](image-url)
Without (9), the solution constructed according to Figure 1 is not unique. For instance, if \(\Phi(\theta) = \sin(k\theta) + 1 \), then \(\mathcal{L}\Phi > 0 \), and \(\Phi = \Phi_0 \). If we take \(\psi_1(\theta) = 0 \), \(-\pi/2k < \theta < 3\pi/2k\), and equal to \(\Phi \) for other values of \(\theta \), then the resulting solution \(\Phi_0 \) satisfies \(\mathcal{L}\Phi_0 > 0 \), but \(\{ \Phi < \Phi_0 \} = (-\pi/2k, 3\pi/2k) \).

We will use the following version of the Sturm Comparison Theorem (see [4]):

\[
\begin{align*}
\text{if } \psi_1, \psi_2 &\in C^2 \text{ and } \mathcal{L}\psi_1 \geq \mathcal{L}\psi_2, \text{ and if} \\
\psi_1(\theta_0) &= \psi_2(\theta_0), \psi_1'(\theta_0) \geq \psi_2'(\theta_0), \text{ then} \\
\psi_1(\theta) &\geq \psi_2(\theta) \text{ for } \theta_0 < \theta < \theta_0 + \pi/k.
\end{align*}
\]

To prove (10), we consider \(\psi = \psi_1 - \psi_2 \), and we may add \(\varepsilon((\theta - \theta_0) + (\theta - \theta_0)^2) \) so that \(\psi'(\theta_0) > 0 \) and \(\mathcal{L}\psi > 0 \) on \((\theta_0, \theta_0 + \pi/k) \). Now we will show that \(\psi > 0 \) on \((\theta_0, \theta_0 + \pi/k) \). Let \(\theta_1 > \theta_0 \) be the first point where \(\psi(\theta_1) = 0 \). We may assume \(\psi'(\theta_1) < 0 \). We set

\[
h(\theta) = \arctan(\psi'(\theta)/k\psi(\theta)).
\]

Since \(h(\theta_0) = +\pi/2 \) and \(h(\theta_1) = -\pi/2 \) we have

\[
\int_{\theta_0}^{\theta_1} h'(\theta) \, d\theta = -\pi.
\]

Further, since \(\mathcal{L}\psi > 0 \), we have \(\psi'' < -k^2\psi^2 \), and with this we may compute that

\[
h'(\theta) > -k.
\]

Thus we have

\[
-\pi = \int_{\theta_0}^{\theta_1} h'(\theta) \, d\theta > -(\theta_1 - \theta_0)k,
\]

and so \(\theta_1 - \theta_0 > \pi/k \) which yields (10).

We will use the notation \(\psi_p \) for the function

\[
\psi_p(\theta) = c\sin(k\theta) + d\cos(k\theta)
\]

such that \(\psi_p(p) = \Phi(p) \) and \(\psi'_p(p) = \Phi'(p) \).

Some properties of \(\psi_p \) are formulated in the following lemmas and are illustrated in Figure 2.

Lemma 1. If \(\mathcal{L}\Phi(p) > 0 \), then there exists \(\varepsilon > 0 \) such that \(\psi_p(\theta) \leq \Phi(\theta) \) for \(\theta \in (p - \varepsilon, p + \varepsilon) \). If \(\mathcal{L}\Phi(p) > 0 \) for \(p_2 < p \leq p_1 \), then \(\psi_{p_2}(\theta) < \psi_{p_1}(\theta) \) for \(p_1 < \theta < p_2 + \pi/k \).
Proof. The first statement is just the comparison (10). The second statement also follows from (10). If we replace ψ_p by $\tilde{\psi}_q = \psi_q - \Phi$, then for $|q - p|$ small

$$\tilde{\psi}_q(\theta) = -k(q)(\theta - q)^2 + o((\theta - q)^2),$$

and $k(q) > 0$. If $p_2 < p_1 < p$, and $|p_2 - p|$ is small, then $\tilde{\psi}_{p_1}$ and $\tilde{\psi}_{p_2}$ will intersect at a point $q \in (p_2, p_1)$. Thus ψ_{p_1} and ψ_{p_2} will intersect as in Figure 2, and so by (10) we have $\psi_{p_1}(\theta) > \psi_{p_2}(\theta)$ for $\theta \in (q, q + \pi/k)$.

Lemma 2. Let Φ have no wide sectors. If (a, b) is an open interval on which $\mathcal{L}\Phi < 0$, then $\psi_a(\theta) > \Phi(\theta)$ for $\theta \in (a, b)$.

Proof. By (10), $\psi_a(\theta) > \Phi(\theta)$ holds for $a < \theta < \min(a + \pi/k, b)$. Thus the result holds unless $a + \pi/k < b$. But in this case we have $(a, a + \pi/k) \subset \{\Phi - \psi_a < 0\}$ which is a wide sector.

Lemma 3. If $\Phi - \delta$ has no wide sectors for some $\delta > 0$ and if $E = \{\mathcal{L}\Phi < 0\}$ consists of a single interval $E = (a, b)$, then Φ exists.

Proof. Note that if $E \neq \emptyset$, then by definition $k > 1/2$. By Lemma 2, $\psi_a(\theta) > \Phi(\theta)$ for $\theta \in E$. And by Lemma 1, $\psi_p(\theta) < \psi_a(\theta)$ holds for $p < a$ and $a < \theta < p + \pi/k$. Further, we claim that there is a wide sector unless $|q - p| < \pi/k$ holds for all p (q is the point where ψ_p crosses Φ from above). First, it is evident that $|a - q_0| < \pi/k$. Thus for p_1 near a, it follows that $|p_1 - r_1| < \pi/k$, where we write $\{\Phi < \psi_{p_1}\} \cap (p_1, q_0) = (r_1, q_1)$. Replacing Φ by

$$\Phi_1 = \Phi - \varepsilon \sin(k(\theta - p_1 + \varepsilon))$$

for $\varepsilon > 0$ small, we obtain a small interval $(p_1 - \delta, p_1 + \delta) \subset \{\Phi_1 < \psi_{p_1}\}$, in addition to $(r_1, q_1) \subset \{\Phi_1 < \psi_{p_1}\}$. Thus by the Remark at the end of the first section, we have

$$|(p_1 - \delta) - q_1| < \pi/k.$$

Letting ε tend to zero, we have $|q_1 - p_1| < \pi/k$. However, by the remark after the definition of wide sector, we see that $|q_1 - p_1| < \pi/k$.

We conclude from this that as we slide p_2 to the left, we must have $|p_2 - a| < |p_2 - q_2| < \pi/k$ unless the interval $(r_2, q_2) = \{\Phi < \psi_{p_2}\}$ disappears for some value, say $p = p_2$. It is clear, then, that the curve ψ_{p_2} satisfies (7)–(9).

Proof of the Theorem. Let us start by choosing a sequence $\Phi_1 \geq \Phi_2 \geq \cdots$ of real analytic functions with $\Phi_j \to \Phi$. If there is an envelope $\tilde{\Phi}_j$ for each $j = 1, 2, \ldots$, then the sequence of envelopes $\tilde{\Phi}_1 \geq \tilde{\Phi}_2 \geq \cdots$ is decreasing and will converge to an upper semicontinuous function not identically $-\infty$, since $\int \tilde{\Phi}_j d\theta \geq 0$. Clearly $\tilde{\Phi} := \lim_{j \to \infty} \tilde{\Phi}_j$ will be our desired function. For the proof we will set $\Phi = \tilde{\Phi}$, and without loss of generality we assume $k > 1/2$.

Since we may replace Φ by a small C^2 perturbation, we assume that

$$\{\mathcal{L}\Phi < 0\} = E = E_1 \cup \cdots \cup E_m$$

is the union of a finite number of connected open intervals with $\overline{E_i} \cap \overline{E_j} = \emptyset$. Writing $E_j = (a_j, b_j)$, we suppose also that $\cdots < a_2 < b_2 < a_1 < b_1$. We will also define Φ to be a C^2 function on \mathbb{R}, which is periodic with period 2π.
We start with ψ_α as in the proof of Lemma 3, and we slide p_3 to the left. If we obtain a tangency ψ_{p_3} for $b_2 \leq p_3 < a_1$ as in Figure 2, then the interval E has been eliminated. The other possibility is that we arrive at $p = b$ without reaching a tangency. In this case, by the argument of Lemma 3, we have $|q_3 - p_3| < \pi/k$. Thus we may consider

$$\psi(\theta) = \psi_{p_3}(\theta) - \lambda \sin(k(\theta - p_3))$$

and increase λ until a tangency $\hat{q} \in (p_3, q_3)$ is obtained (see Figure 3).

In the first case above, we will say that E_1 is covered by ψ_{p_3}. We will replace Φ by ψ_{p_3} over the interval (p_3, q_3), and the resulting curve will be C^1, and piecewise C^2. Since $|p_3 - q_3| < \pi/k$ and $k > 1/2$, we may extend the replacement by ψ_{p_3} to be 2π-periodic on \mathbb{R}.

In the second case, we will replace Φ by the function $\hat{\psi}_1$ on the interval $\tilde{E}_2 = (a_2, \hat{q}_1)$, as in Figure 3. We will call \tilde{E}_2 a temporary interval. The new curve we obtain is piecewise C^2, with a downward-opening angle at a_2. The Sturm Comparison Theorem continues to hold in this nonsmooth case, so we may apply Lemma 3 to conclude that \tilde{E}_2 has length $< \pi/k < 2\pi$. Thus we can extend the temporary interval to have period 2π on \mathbb{R}.

Now we proceed by decreasing induction on the number of uncovered intervals. By Lemma 4 below, if there is only one interval left (temporary or not yet touched), it will be covered by the sliding procedure. In Lemma 4 we will show that if we start at a temporary interval and start sliding to the left, then we will produce another temporary interval containing both E_1 and E_2.

As long as we obtain only temporary intervals, without a covering, we may continue similarly to obtain a temporary interval \tilde{E}_j containing $E_1 \cup \cdots \cup E_{j-1}$. By hypothesis, there is no wide amalgamated sector, so there exist $a \in \mathbb{R}$ and finitely many sectors $E_1 \cup \cdots \cup E_m$ such that

$$\{\mathcal{L} \Phi < 0\} \cap (a, a + \pi/k) = E_1 \cup \cdots \cup E_m$$

and

$$\{\mathcal{L} \Phi \geq 0\} \supset [a - \pi/k, a].$$
If the next interval \tilde{E}_{m+1} is temporary, it must span $[a - \pi/k, a]$ and thus have length $> \pi/k$. On the other hand, by Lemma 4, a temporary interval \tilde{E}_{m+1} would be forced to have length $< \pi/k$. Thus it follows from Lemma 4 that this sliding procedure must in fact produce intervals that cover E_j for $1 \leq j \leq m$.

Since, at each step, we reduce the total number of uncovered intervals, the proof is completed by Lemma 4.

Lemma 4. Let \tilde{E}_2 be a temporary interval given by $\hat{\psi}_1$. The procedure of sliding ψ_p, starting with $p = a_2$ and travelling to the left, will yield either a covering of E_2 or a new temporary interval \tilde{E}_3 containing $E_1 \cup E_2$. The interval \tilde{E}_3, if it exists, will have length $< \pi/k$. Thus if $\mathcal{P}\Phi > 0$ on $[a_2 - \pi/k, a_2]$ then this will yield a covering of E_2.

Proof. As in Lemma 2, we see that ψ_{a_2} lies above Φ over E_2 and above ψ_1 over (p_3, q_1). Now we slide p to the left and obtain a function $\hat{\psi}_2$ which either covers \tilde{E}_2 or gives a temporary interval containing E_2. If the point q_2, where $\hat{\psi}_2$ is tangent to Φ, lies to the right of E_1, then $\hat{\psi}_2$ gives a temporary interval \tilde{E}_3 containing both E_1 and E_2.

Otherwise, q_2 lies between E_1 and E_2, and so $\hat{\psi}_1$ and $\hat{\psi}_2$ cross at a point $\tilde{\theta}$ (see Figure 4). We show that in this case $|b_3 - v_2| < \pi/k$. By the construction of the temporary intervals, we have $|b_3 - q_2| < \pi/k, |b_2 - q_1| < \pi/k$.

Now we consider

$$\psi = \hat{\psi}_2 - \delta \sin(k(\theta - q_2))$$

and note that for $\varepsilon > 0$ sufficiently small, $(q_2 - \varepsilon, q_2) \subset (\Phi < \psi)$. Thus the amalgamated interval of $(q_2 - \varepsilon, q_2)$ in $(\Phi < \psi)$ contains $(b_3, v_2 - \varepsilon)$. Letting δ tend to zero, we have $|b_3 - v_2| \leq \pi/k$.

Now we may replace $\hat{\psi}_2$ by $\psi^\lambda(\theta) = \hat{\psi}_2(\theta) - \lambda \sin(k(\theta - b_3))$ and lower $\hat{\psi}_2$ until we obtain a function ψ_3 with a tangency $q_3 \in (q_2, v_2)$. If q_3 lies to the right of E_1, then the new temporary interval \tilde{E}_3 contains $E_1 \cup E_2$, and the proof of the lemma is complete. Otherwise, if $q_3 \in (q_2, b_1)$ then it is evident from Figure 4 that $\hat{\psi}_3$ will intersect ψ_1 at a point $\tilde{\theta}_3 \in (\hat{\theta}, b_1)$. By the comparison (10), we see that $\hat{\psi}_3(\theta) \geq \hat{\psi}_1(\theta)$ holds for $\hat{\theta}_3 < \theta < \hat{\theta}_3 + \pi/k$. In particular, $\hat{\psi}_3(q_1) > 0$, and so we may again increase λ to find another tangency.
Thus it follows that whenever we reach a tangency $\hat{p}_j < b_1$ we have $\hat{\psi}_j(\hat{q}_1) > 0$, and we may increase λ further to find another tangency $\hat{p}_{j+1} \in (\hat{p}_j, v_2)$. Clearly this process must end, i.e., we must have a tangency $\hat{p}_j \geq b_1$, since for λ sufficiently large we have $\psi^\lambda(\hat{q}_1) < 0$. This completes the proof.

References

11. J. E. Fornaess and C. Rea, Local holomorphic extendability and nonextendability of CR-functions on smooth boundaries,

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47405