## Local and global envelopes of holomorphy of domains in $\textbf {C}^ 2$

HTML articles powered by AMS MathViewer

- by Eric Bedford PDF
- Trans. Amer. Math. Soc.
**292**(1985), 665-674 Request permission

## Abstract:

A criterion is given for a smoothly bounded domain $D \subset {{\mathbf {C}}^2}$ to be locally extendible to a neighborhood of a point ${z_0} \in \partial D$. (This result may also be formulated in terms of extension of CR functions on $\partial D$.) This is related to the envelope of holomorphy of the semitubular domain \[ \Omega (\Phi ) = \{ (z,w) \in {{\mathbf {C}}^2}:\operatorname {Re} w + {r^k}\Phi (\theta ) < 0\} ,\] where $r = |z|$, $\theta = \arg (z)$. Necessary and sufficient conditions are given for the envelope of holomorphy of $\Omega (\Phi )$ to be ${{\mathbf {C}}^2}$. These conditions are equivalent to the existence of a subharmonic minorant for ${r^k}\Phi (\theta )$.## References

- M. S. Baouendi, C. H. Chang, and F. Trèves,
*Microlocal hypo-analyticity and extension of CR functions*, J. Differential Geom.**18**(1983), no. 3, 331–391. MR**723811**, DOI 10.4310/jdg/1214437782 - M. S. Baouendi and F. Trèves,
*About the holomorphic extension of CR functions on real hypersurfaces in complex space*, Duke Math. J.**51**(1984), no. 1, 77–107. MR**744289**, DOI 10.1215/S0012-7094-84-05105-6 - Eric Bedford and John Erik Fornæss,
*Local extension of CR functions from weakly pseudoconvex boundaries*, Michigan Math. J.**25**(1978), no. 3, 259–262. MR**512898** - Eric Bedford and John Erik Fornaess,
*A construction of peak functions on weakly pseudoconvex domains*, Ann. of Math. (2)**107**(1978), no. 3, 555–568. MR**492400**, DOI 10.2307/1971128 - A. Boggess and J. Pitts,
*CR extension near a point of higher type*, Duke Math. J.**52**(1985), no. 1, 67–102. MR**791293**, DOI 10.1215/S0012-7094-85-05206-8 - Hans J. Bremermann,
*Die Holomorphiehüllen der Tubenund Halbtubengebiete*, Math. Ann.**127**(1954), 406–423 (German). MR**62843**, DOI 10.1007/BF01361133 - Ferdinand Docquier and Hans Grauert,
*Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten*, Math. Ann.**140**(1960), 94–123 (German). MR**148939**, DOI 10.1007/BF01360084 - John C. Polking and R. O. Wells Jr.,
*Boundary values of Dolbeault cohomology classes and a generalized Bochner-Hartogs theorem*, Abh. Math. Sem. Univ. Hamburg**47**(1978), 3–24. MR**504111**, DOI 10.1007/BF02941349 - Claudio Rea,
*Extension holomorphe bilatérale des fonctions CR données sur une hypersurface différentiable de $\textbf {C}^{2}$*, C. R. Acad. Sci. Paris Sér. I Math.**294**(1982), no. 17, 577–579 (French, with English summary). MR**663083** - Claudio Rea,
*Prolongement holomorphe des fonctions CR, conditions suffisantes*, C. R. Acad. Sci. Paris Sér. I Math.**297**(1983), no. 3, 163–166 (French, with English summary). MR**725396**
J. E. Fornaess and C. Rea,

*Local holomorphic extendability and nonextendability of*$CR$-

*functions on smooth boundaries*,

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**292**(1985), 665-674 - MSC: Primary 32D10; Secondary 32D15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808745-2
- MathSciNet review: 808745