A canonical partition of the periodic orbits of chaotic maps
HTML articles powered by AMS MathViewer
- by Kathleen T. Alligood
- Trans. Amer. Math. Soc. 292 (1985), 713-719
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808749-X
- PDF | Request permission
Abstract:
We show that the periodic orbits of an area-contracting horseshoe map can be partitioned into subsets of orbits of minimum period $k,\;2k,\;4k,\;8k \ldots$, for some positive integer $k$. This partition is natural in the following sense: for any parametrized area-contracting map which forms a horseshoe, the orbits in one subset of the partition are contained in a single component of orbits in the full parameter space. Furthermore, prior to the formation of the horseshoe, this component contains attracting orbits of minimum period ${2^m}k$, for each nonnegative integer $m$.References
- Kathleen T. Alligood, John Mallet-Paret, and James A. Yorke, An index for the global continuation of relatively isolated sets of periodic orbits, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 1–21. MR 730259, DOI 10.1007/BFb0061406 S. N. Chow, J. Mallet-Paret and J. Yorke, A bifurcation invariant: degenerate orbits treated as clusters of simple orbits, Geometric Dynamics, Lecture Notes in Math., vol. 1007, Springer-Verlag, Berlin and New York.
- John Franks, Period doubling and the Lefschetz formula, Trans. Amer. Math. Soc. 287 (1985), no. 1, 275–283. MR 766219, DOI 10.1090/S0002-9947-1985-0766219-1
- John Mallet-Paret and James A. Yorke, Snakes: oriented families of periodic orbits, their sources, sinks, and continuation, J. Differential Equations 43 (1982), no. 3, 419–450. MR 649847, DOI 10.1016/0022-0396(82)90085-7
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- James A. Yorke and Kathleen T. Alligood, Period doubling cascades of attractors: a prerequisite for horseshoes, Comm. Math. Phys. 101 (1985), no. 3, 305–321. MR 815187
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 713-719
- MSC: Primary 58F12; Secondary 34C35, 58F08, 58F13, 58F22
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808749-X
- MathSciNet review: 808749