Derivatives of mappings with applications to nonlinear differential equations
HTML articles powered by AMS MathViewer
- by Martin Schechter
- Trans. Amer. Math. Soc. 293 (1986), 53-69
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814912-5
- PDF | Request permission
Abstract:
We present a new definition of differentiation for mappings of sets in topological vector spaces. Complete flexibility is allowed in choosing the topology with which the derivative is taken. We determine the largest space on which the derivative can act. Our definition includes all others hitherto given, and the basic theorems of calculus hold for it. Applications are considered here and elsewhere.References
- L. A. Ljusternik, On the extremals of functionals, Mat. Sb. 41 (1934), 390-401.
- A. D. Ioffe and V. M. Tihomirov, Theorie der Extremalaufgaben, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Translated from the Russian by Bernd Luderer. MR 527119 V. I. Averbukh and O. G. Smolyanov, The theory of differentiation in linear topological spaces, Russian Math. Surveys 22 (1967), 201-258; The various definitions of the derivative in linear topological spaces, ibid. 23 (1968), 67-112.
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- M. Schechter and R. Weder, A theorem on the existence of dyon solutions, Ann. Physics 132 (1981), no. 2, 292–327. MR 618145, DOI 10.1016/0003-4916(81)90070-1
- L. A. Liusternik and V. J. Sobolev, Elements of functional analysis, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. 5, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publishers, Inc., New York, 1961. MR 0141967
- Martin Schechter, Operator methods in quantum mechanics, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 597895
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 53-69
- MSC: Primary 49A52; Secondary 46G05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814912-5
- MathSciNet review: 814912