CONJUGACY PROBLEM IN $\text{GL}_2(\mathbb{Z}[\sqrt{-1}])$ AND UNITS OF QUADRATIC EXTENSIONS OF $\mathbb{Q}(\sqrt{-1})$

BY
HIRONORI ONISHI

ABSTRACT. A highly efficient procedure for deciding if two given elements of $\text{GL}_2(\mathbb{Z}[\sqrt{-1}])$ are conjugate or not will be presented. It makes use of a continued fraction algorithm in $\mathbb{Z}[\sqrt{-1}]$ and gives a fundamental unit of any given quadratic extension of $\mathbb{Q}(\sqrt{-1})$.

(1) Introduction. A solution to the conjugacy problem in the group $G = \text{GL}_2(\mathbb{Z}[\sqrt{-1}])$ is included in the result of Grunewald [3]. But for a nice group like this there ought to be a simpler solution which makes use of the special nature of G. On the other hand, since G is not an amalgam of simpler groups, we should not expect too easy a solution. In this paper we present a straightforward procedure for deciding if two given elements of G are conjugate or not. It is based on a continued fraction algorithm in the ring $\mathbb{Z}[\sqrt{-1}]$ and a module theoretic consideration. It combines the ideas used in [1 and 2]. As the examples show it is highly efficient. A similar solution can be given for the group $\text{GL}_2(\mathcal{O})$, where \mathcal{O} is the ring of integers of any imaginary quadratic field, but in order to fix our attention we shall deal with the case when $\mathcal{O} = \mathbb{Z}[i]$, $i = \sqrt{-1}$.

(2) Actually what we solve is the similarity problem for the 2×2 matrices over $\mathcal{O} = \mathbb{Z}[i]$; given two such matrices A and B the problem is to decide if there is an $R \in \text{GL}_2(\mathcal{O})$ such that $RAR^{-1} = B$. Our solution gives an explicit R if there is one. It also gives an effective characterization of the centralizer

$$Z(A) = \{R \in \text{GL}_2(\mathcal{O}) \mid RA = AR\}$$

for a given A, so that we can find all $R \in \text{GL}_2(\mathcal{O})$ such that $RAR^{-1} = B$. The characterization of $Z(A)$ is obtained by finding a fundamental unit of an order in a quadratic extension of $F = \mathbb{Q}(i)$; our method generates a fundamental unit.

(3) Given 2×2 matrices A and B over \mathcal{O}, call $A \sim B$ similar if $RAR^{-1} = B$ for some $R \in \text{GL}_2(\mathcal{O})$. If $A \sim B$, then A and B have the same characteristic polynomial f over \mathcal{O}. Given a monic quadratic polynomial f over \mathcal{O}, let $M(f)$ denote the set of 2×2 matrices over \mathcal{O} whose characteristic polynomials are equal to f. In deciding if $A \sim B$, we may assume that A and $B \in M(f)$ for some f. When f is reducible over F, deciding if $A \sim B$ is easy and we discuss it in the Appendix.

(4) Assume that f is irreducible over F. Put

$$f(t) = t^2 - qt + r, \quad \Delta = q^2 - 4r.$$
Given

\[A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M(f), \]

put \(\lambda = (q + \sqrt{\Delta})/2 \), where \(\text{Im}(\sqrt{\Delta}) > 0 \) or \(\sqrt{\Delta} > 0 \). The number \(\lambda \) is an eigenvalue of \(A \). Put

\[\phi(A) = \alpha = (\lambda - d)/b = (a - d + \sqrt{\Delta})/2b. \]

Since \(f \) is irreducible, \(b\alpha \neq 0 \). The column vector \((\alpha, 1)^T\) is an eigenvector of \(A \) belonging to \(\lambda \) and \(A\alpha = \alpha \) (under the projective action of \(A \) on \(\mathbf{C} \)).

(5) Put \(K = F(\sqrt{\Delta}) \). Given \(\xi \in K \), let \(\xi' \) denote its conjugate over \(F \). Given \(A \in M(f) \), if \(\alpha = \phi(A) \) then

\[A = \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda' \end{pmatrix} \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix}^{-1}. \]

Thus the map \(\phi: M(f) \to K \) is injective (for a given \(f \)). For any \(R \in \text{GL}_2(\mathcal{O}) \),

\[RAR^{-1} = \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda' \end{pmatrix} \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix}^{-1}. \]

Thus by injectivity of \(\phi \) on \(M(f) \), we have \(\phi(RAR^{-1}) = R\phi(A) \). Given \(\alpha \) and \(\beta \in K - F \), call \(\alpha \sim \beta \) if \(R\alpha = \beta \) for some \(R \in \text{GL}_2(\mathcal{O}) \). From the discussion above, we see that, given \(A \) and \(B \in M(f) \),

\[A \sim B \ \text{iff} \ \phi(A) \sim \phi(B). \]

Thus the problem is transformed to this: Given \(\alpha \) and \(\beta \in K - F \), decide if \(\alpha \sim \beta \).

(6) Given \(\alpha \) and \(\beta \in K \), let \(\langle \alpha, \beta \rangle \) denote the module over \(\mathcal{O} \) generated by \(\alpha \) and \(\beta \). In this paper, by a module we shall mean a finitely generated full module over \(\mathcal{O} \) contained in \(K \). Every module is of the form \(\langle \alpha, \beta \rangle \) and \(\langle \alpha, \beta \rangle \) is a basis of this module over \(\mathcal{O} \). For example, if \(\alpha \in K - F \), then \(\langle \alpha, 1 \rangle \) is a module. Given modules \(U \) and \(V \), call \(U \sim V \) similar if \(U = \lambda V \) for some \(\lambda \in K^\times \).

(7) Given \(\alpha \) and \(\beta \in K - F \), put \(U = \langle \alpha, 1 \rangle \) and \(V = \langle \beta, 1 \rangle \). Then

\[\alpha \sim \beta \ \text{iff} \ \ U \sim V. \]

In fact, if \(\alpha \sim \beta \), say \(R\alpha = \beta \), \(R \in \text{GL}_2(\mathcal{O}) \), then \(R\alpha_1 = \lambda(\beta) \) for some \(\lambda \in K^\times \) and hence \(U = \lambda V \), i.e., \(U \sim V \). Going backward we get the converse. Thus the problem is now transformed to the following: Given modules \(U \) and \(V \), decide if \(U \sim V \).

(8) Let \(U = \langle \alpha, \beta \rangle \) be a module. An element \(\xi = x\alpha + y\beta \) of \(U \), where it is understood that \(x \) and \(y \in \mathcal{O} \), is called primitive if \((x, y) = 1 \), i.e., \(x \) and \(y \) are coprime. The primitiveness of an element of \(U \) does not depend on the choice of a basis \(\langle \alpha, \beta \rangle \) of \(U \). A member of a basis is primitive. It is easy to see that if \(\rho \) is a primitive element of \(U \), then \(U = \langle \sigma, \rho \rangle \) for some \(\sigma \in U \). A module \(U \) is called normalized if 1 is a primitive element of \(U \) so that \(U = \langle \alpha, 1 \rangle \) for some \(\alpha \in K - F \). Given modules \(U \) and \(V \), call \(U \equiv V \) if \(U = cv \) for some \(c \in F^\times \).

(9) For any module \(U \), there is a unique normalized module \(V \) such that \(U \equiv V \).

Proof. \(U \cap \mathcal{O} \) is a nonzero fractional ideal of \(\mathcal{O} \) and hence \(U \cap \mathcal{O} = (b) \) for some \(b \in F^\times \) and \(b \) has to be a primitive element of \(U \). Thus \(U = \langle \alpha, b \rangle \) for
some α. $V = b^{-1}U = \langle ab^{-1}, 1 \rangle$ is normalized and $U \equiv V$. To see the uniqueness, suppose that U and V are normalized modules such that $U \equiv V$, say $U = cV$, $c \in \mathcal{O}^\times$, $U = \langle \alpha, 1 \rangle$, and $V = \langle \beta, 1 \rangle$. Then $\langle \alpha, 1 \rangle = \langle c\alpha, c \rangle$ and hence there is an $R \in \text{GL}_2(\mathcal{O})$ such that $R^{(\alpha)} = c^{(\beta)}$. Since $c \in \mathcal{O}$ and $\alpha \not\in \mathcal{O}$, R has to be of the form

$$R = \begin{pmatrix} x & y \\ 0 & c \end{pmatrix}$$

with $xc = \det R \in \mathcal{O}^\times = \{ \pm 1, \pm i \}$. Thus $c \in \mathcal{O}^\times$ and $U = V$.

(10) Given α and $\beta \in K - F$, call $\alpha \equiv \beta$ if

$$\begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix} \alpha = \varepsilon \alpha + c = \beta$$

for some $\varepsilon \in \mathcal{O}^\times$ and $c \in \mathcal{O}$. From the proof of (9), it is clear that, given normalized modules $U = \langle \alpha, 1 \rangle$ and $V = \langle \beta, 1 \rangle$,

$$U = V \iff \alpha \equiv \beta.$$

We assume that, given α and $\beta \in K - F$, recognizing if $\alpha \equiv \beta$ is instantaneous. For example, if

$$\alpha = (e_1 + \sqrt{\Delta})/2b_1 \quad \text{and} \quad \beta = (e_2 + \sqrt{\Delta})/2b_2,$$

where $e_1, b_1, e_2, b_2 \in \mathcal{O}$, then $\alpha \equiv \beta$ iff $\varepsilon b_1 = b_2$ for some $\varepsilon \in \mathcal{O}^\times$ and $e_1 \equiv e_2 \pmod{2b_1}$.

(11) Let U be a module. A nonzero element ρ of U is called a convergent of U if 0 is the only element \varnothing of U such that $|\varnothing| < |\rho|$ and $|\varnothing'| < |\rho'|$.

Note that given α and $\beta \in K$, $|\alpha| = |\beta|$ iff $|\alpha'| = |\beta'|$. (This can be easily proved by looking at $\gamma = \alpha/\beta$ and its complex conjugate γ and their norms.) For any $\lambda \in K^\times$, as ρ ranges over the convergents of U, $\lambda \rho$ ranges over the convergents of λU.

(12) Let $U = \langle \alpha, \beta \rangle$. If $\xi = x\alpha + y\beta \in U$, then $\xi' = x\alpha' + y\beta'$ and

$$x = (\xi \beta' - \xi' \beta)/(\alpha \beta' - \alpha' \beta) \quad \text{and} \quad y = (\alpha \xi' - \alpha' \xi)/(\alpha \beta' - \alpha' \beta).$$

Thus if $|\xi|$ and $|\xi'|$ are bounded, then $|x|$ and $|y|$ are bounded. Thus for any c_1 and $c_2 > 0$, U contains only a finite number of element ξ such that $|\xi| < c_1$ and $|\xi'| < c_2$. This shows that there are convergents of U.

(13) Let ρ be a convergent of U. Then ρ is a primitive element of U and $U = \langle \sigma, \rho \rangle$ for some σ and $\rho^{-1}U = \langle \sigma \rho^{-1}, 1 \rangle$ is normalized. The normalized module $\rho^{-1}U$ is called a derived module of U. Let $\mathcal{D}(U)$ denote the set of all derived modules of U, i.e., $\mathcal{D}(U) = \{ \rho^{-1}U \mid \rho \text{ is a convergent of } U \}$.

(14) If $V \in \mathcal{D}(U)$, then $U \sim V$. Thus if $\mathcal{D}(U) \cap \mathcal{D}(V) \neq \emptyset$, then $U \sim V$. Conversely, suppose $U \sim V$, say $\lambda U = V$, $\lambda \in K^\times$. The relation $\lambda \rho = \sigma$ establishes a one-to-one correspondence between the convergents ρ of U and the convergents σ of V and $\rho^{-1}U = \sigma^{-1}V$. Thus $\mathcal{D}(U) = \mathcal{D}(V)$. In particular, given modules U and V, either $\mathcal{D}(U) = \mathcal{D}(V)$ or $\mathcal{D}(U) \cap \mathcal{D}(V) = \emptyset$ according as $U \sim V$ or not.

(15) By an argument similar to the one given in [2], we can show that $\mathcal{D}(U)$ is a finite set for any module U and such an argument indicates how to find all members
In this paper we shall accomplish this by means of a continued fraction algorithm, which is more efficient.

Given a module \(U \), let \(O_U \) denote its coefficient ring; \(O_U \) consists of \(\omega \in K \) such that \(\omega \xi \in U \) for all \(\xi \in U \). \(O_U \) is a module and \(O \subset O_U \subset O_K \), where \(O_K \) is the ring of integers of \(K \). If \(U \sim U \), then \(O_U = O_V \). Given \(\lambda \in K^\times \), \(\lambda U = U \) iff \(\lambda \in O_U^\times \), then as \(\rho \) ranges over the convergents of \(U \), so does \(\lambda \rho \).

Given convergents \(\rho \) and \(\sigma \) of \(U \), call \(\rho \sim \sigma \) if \(\rho = \sigma \) for some \(\lambda \in O_U^\times \). A root of unity in \(O_U^\times \) is usually a 4th root of unity, i.e., in \(O^\times \), but it could be an 8th root or a 12th root of unity. We assume that given convergents \(\rho \) and \(\sigma \) of \(U \), recognizing if \(\rho \sim \sigma \) is instantaneous. If \(\rho \sim \sigma \), then \(|\rho| = |\sigma| \) (and hence \(|\rho'| = |\sigma'| \)). But since \(\rho \) and \(\sigma \) are not necessarily integers, it is possible that \(\rho \neq \sigma \) and \(|\rho| = |\sigma| \) (cf. Example 3 and (35)).

Our main objective in the rest of the paper is to show that \(C(U) \) is finite and to see how we can systematically obtain a complete set of representatives of the equivalence classes in \(C(U) \). We are going to develop a continued fraction algorithm for these purposes. We start with a simplest version. Such an algorithm has an independent interest of its own (cf. [4, pp. 181–188]).

Given \(\alpha \in C \), let \([\alpha] \) denote the element \(\rho \in O \) such that \(\alpha - \rho \) is in the square

\[
-\frac{1}{2} < x < \frac{1}{2} \quad \text{and} \quad -\frac{1}{2} < y < \frac{1}{2}
\]

of the complex plane. Given \(\alpha \in C \), put \(\alpha_0 = \alpha \) and having defined \(\alpha_n \) for some \(n \geq 0 \), put \(\rho_n = [\alpha_n] \) and \(\alpha_{n+1} = 1/(\alpha_n - \rho_n) \) provided \(\alpha_n \neq \rho_n \), i.e., \(\alpha_n \notin O \). Note that \(|\alpha_n| \geq \sqrt{2} \) for \(n > 0 \). It is easily verified that \(\alpha_n \in O \) for some \(n \geq 0 \) iff \(\alpha \in F \).

Given \(\alpha \in C \), let \(p_n \) be as in (19) and put

\[
P_n = \begin{pmatrix} p_n & 1 \\ 1 & 0 \end{pmatrix}, \quad A_0 = I \quad \text{and} \quad A_n = P_0 P_1 \cdots P_{n-1}.
\]

Then we verify that

\[
A_n = \begin{pmatrix} a_n & a_{n-1} \\ b_n & b_{n-1} \end{pmatrix},
\]

where \(a_n \) and \(b_n \) are given by the recursions \(a_0 = 1, a_1 = p_0, a_{n+1} = a_n p_n + a_{n-1}, b_0 = 0, b_1 = 1, b_{n+1} = b_n p_n + b_{n-1} \). Since \(\det P_n = -1 \), \(\det A_n = (-1)^n \). In particular, \((a_n, b_n) = 1 \).

From the definition of \(\alpha_n \) and \(p_n \) in (19), we have

\[
P_n^{-1} \alpha_n = \alpha_{n+1} \quad \text{and} \quad P_n^{-1} \begin{pmatrix} \alpha_n \\ 1 \end{pmatrix} = \alpha_n^{-1} \begin{pmatrix} \alpha_{n+1} \\ 1 \end{pmatrix}.
\]

Thus

\[
A_n^{-1} \alpha = \alpha_n \quad \text{and} \quad A_n^{-1} \begin{pmatrix} \alpha \\ 1 \end{pmatrix} = (\alpha_1 \cdots \alpha_n)^{-1} \begin{pmatrix} \alpha_n \\ 1 \end{pmatrix}.
\]

By looking at the second component of the second equality above, we get that \(a_n - b_n \alpha = (-1)^n / (\alpha_1 \cdots \alpha_n) \). Since \(|\alpha_n| \geq \sqrt{2} \) for \(n > 0 \), it follows that \(|a_n - b_n \alpha| \leq
1/\sqrt{2\pi}. In particular, for \(\alpha \notin F \),

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \alpha \quad \text{and} \quad \lim_{n \to \infty} b_n = \infty.
\]

(22) LEMMA. With \(\alpha_n \) and \(b_n \) as above for \(\alpha \notin F \), \(|b_n/(\alpha_1 \cdots \alpha_n)| < \sqrt{2} + 1 \) for all \(n > 0 \).

PROOF. By looking at the second component of the equality

\[
(\alpha_1 \cdots \alpha_n) \begin{pmatrix} \alpha \\ 1 \end{pmatrix} = A_n \begin{pmatrix} \alpha_n \\ 1 \end{pmatrix},
\]

we get that \(\alpha_1 \cdots \alpha_n = b_n \alpha_n + b_{n-1} \), and hence

\[
|b_n/(\alpha_1 \cdots \alpha_n)| = |\alpha_n + b_{n-1}/b_n|^{-1}.
\]

Call \(n > 0 \) good if \(|b_n| > |b_{n-1}| \). Since \(b_0 = 0 \) and \(b_1 = 1 \), \(n = 1 \) is good. (It can be shown that all \(n > 0 \) are good but we do not need this. In any case since \(b_n \to \infty \), there are infinitely many good \(n \)'s.) If \(n \) is good, then

\[
|\alpha_n + b_{n-1}/b_n| > |\alpha_n| - |b_{n-1}/b_n| > \sqrt{2} - 1,
\]

and hence

\[
|b_n/(\alpha_1 \cdots \alpha_n)| < 1/((\sqrt{2} - 1) = \sqrt{2} + 1.
\]

Suppose \(n \) is bad. Take the largest good \(k < n \). Then since \(n, n-1, \ldots, k+1 \) are bad, \(|b_n| \leq |b_{n-1}| \leq \cdots \leq |b_k| \), and hence

\[
\left| \frac{b_n}{\alpha_1 \cdots \alpha_n} \right| = \left| \frac{b_k}{\alpha_1 \cdots \alpha_k} \right| \left| \frac{b_n}{b_k \alpha_{k+1} \cdots \alpha_n} \right| < \left(\sqrt{2} + 1 \right) \left| \frac{b_n}{b_k} \right| \leq \sqrt{2} + 1.
\]

(23) THEOREM (PERIODICITY). Given \(\alpha \in C - F \), \(\alpha_{k+l} = \alpha_k \) for some \(k \) and \(l \) with \(l > 0 \) iff \(\alpha \) is quadratic over \(F \).

PROOF. Suppose \(\alpha_{k+l} = \alpha_k \), \(l > 0 \). Then with \(A = P_k \cdots P_{k+l-1} = A_k^{-1} A_{k+l} \), \(\alpha_k = A \alpha_{k+l} = A \alpha_k \). Thus \(\alpha_k \) is quadratic over \(F \). Since \(\alpha = A \alpha_k \), \(\alpha \) is quadratic over \(F \) also.

Conversely, suppose \(\alpha \) is quadratic over \(F \), say \(\delta^2 - e \alpha + c = 0 \), where \(d, e, c \in \mathcal{O} \) and \(dc \neq 0 \). Put \(C = \begin{pmatrix} e & -2c \\ 2d & e \end{pmatrix} \). Then \(C \alpha = \alpha \). Since \(\alpha = A \alpha_n \), \(A^{-1} CA \alpha_n = \alpha_n \).

Computing

\[
C_n = A_n^{-1} CA_n = \begin{pmatrix} e_n & -2c_n \\ 2d_n & -e_n \end{pmatrix}
\]

modulo \(\pm I \), we get that

\[
d_n = (2d_n - e) \alpha_n + c \text{ and } c_n = -d_n - 1.
\]

Put \(a_n = b_n \alpha + \delta_n \) and substitute this into the expression for \(d_n \) above. We get that \(d_n = (2d \alpha - e) \delta_n + d \delta_n^2 \). By (21) and (22), \(|b_n \delta_n| < \sqrt{2} + 1 \) and \(\delta_n \to 0 \) as \(n \to \infty \). Thus \(d_n \) are bounded by a constant (depending only on \(\alpha \)). Then so are \(c_n \). Since \(e_n^2 - 4d_n c_n = e^2 - 4dc, \) \(e_n \) are bounded also. Since \(d_n \alpha_n^2 - e_n \alpha_n + c_n = 0 \) and \(d_n, e_n, c_n \) are bounded, we conclude that there are only a finite number of distinct \(\alpha_n \). Thus \(\alpha_{k+l} = \alpha_k \) for some \(k \) and \(l > 0 \) (cf. [4, p. 185] for another proof).
(24) Let \(\alpha \) be quadratic over \(F \) and suppose \(\alpha_{k+l} = \alpha_k, l > 0 \). Then \(|\alpha_n - \alpha'_n| \geq \sqrt{2} - 1 \) for all \(n \geq k \).

Proof. Let the notations be as in (23) and put \(\Delta = e^2 - 4dc \). Then \(\alpha_n = (e_n + \sqrt{\Delta})/2d_n \) for all \(n \geq 0 \) (with \(d_0 = d, e_0 = e \) and \(c_0 = c \)) and hence \(\alpha_n - \alpha'_n = \sqrt{\Delta}/d_n \). Since \(2d\alpha - e = \sqrt{\Delta}, d_n = \sqrt{\Delta}b_n\delta_n + d\delta_n^2 \) and \(\alpha_n = \alpha_{n+m} \) for all \(n \geq k \) and \(m \geq 0 \) and \(\delta_n \to 0 \) as \(n \to \infty \), we get that \(|d_n| \leq (\sqrt{2} + 1)/|\sqrt{\Delta}| \) for all \(n \geq k \) and hence

\[
|\alpha_n - \alpha'_n| = |\sqrt{\Delta}/d_n| \geq 1/(\sqrt{2} + 1) = \sqrt{2} - 1.
\]

(25) Given \(\alpha \in \mathbb{K} - F \), put \(U = \langle \alpha, 1 \rangle \). By means of the simple continued fraction algorithm developed above, we can find a unit \(\lambda \in \mathcal{O}_U^\times \) such that \(|\lambda| > 1 \). In fact, compute \(\alpha_n \) until we get \(\alpha_{k+l} \equiv \alpha_k, l > 0 \), and consider \(U_n = \langle \alpha_n, 1 \rangle \). Since \(A_n \in \text{GL}_2(\mathbb{O}) \) and

\[
A_n(\alpha_n^1) = (\alpha_1 \cdots \alpha_n)(\alpha_1^1),
\]

then put \(\lambda = \alpha_{k+1} \cdots \alpha_{k+l} \). Then \(|\lambda| > 1 \) and \(U_k = U_{k+l} = U_k \) and hence \(\lambda \in \mathcal{O}_U^\times \). (But \(\lambda \) may not be a fundamental unit of \(\mathcal{O}_U \).)

(26) Given a module \(U \), the norms (over \(F \)) of the convergents of \(U \) are bounded.

Proof. We may assume that \(U = \langle \alpha, 1 \rangle \). Let \(\rho \) be a convergent of \(U \). If \(|\rho| > 1 \), then take \(\lambda \in \mathcal{O}_U^\times \) such that \(|\lambda\rho| \leq 1 \) (cf. (25)). Then \(\sigma = \lambda\rho \) is a convergent of \(U \) such that \(|\sigma| \leq 1 \). Since \(|N\lambda| = 1, |N\sigma| = |N\rho| \), thus we may assume that \(|\rho| \leq 1 \).

Let \(\alpha_n \) and \(b_n \) be as in (20) for \(\alpha \) and consider the elements \(\xi_n = a_n - b_n\alpha \) of \(U \). Since \(\xi_n = (-1)^n(\alpha_1 \cdots \alpha_n)^{-1} \) (cf. (21)) and \(|\alpha_n| \geq \sqrt{2} \), \(\xi_n \) decreases to 0. Take \(n > 0 \) such that

\[
|\xi_n| < |\rho| \leq |\xi_{n-1}| = |\xi_n|/|\alpha_n|.
\]

Since \(\xi_n \in U \) and \(\rho \) is a convergent of \(U \), \(|\rho'| < |\xi'| \). Thus \(|N\rho| < |N\xi_n|/|\alpha_n| \). Since only a finite number of \(\alpha_n \) are distinct, \(|\alpha_n| \) are bounded. On the other hand,

\[
N\xi_n = (N\alpha_1 \cdots N\alpha_n)^{-1}.
\]

With the notations as in (23), \(d_n\alpha_n^2 - e_n\alpha_n + c_n = 0 \), and hence \(N\alpha_n = c_n/d_n \). Since \(c_n = -d_{n-1} \), \(N\alpha_1 \cdots N\alpha_n = (-1)^n d_n^{-1} \). Thus \(N\xi_n = (-1)^n d_n^{-1} \) and these are bounded. (A modification of the argument used in (11) of [2] gives another proof of this result via Minkowski Theorem.)

(27) Given \(c_2 > c_1 > 0 \), the number of convergents of \(U \) such that \(c_2 > |\rho| > c_1 \) is finite.

Proof. Choose \(c_0 > 0 \) such that \(|N\rho| < c_0 \) for all convergents \(\rho \) of \(U \) (cf. (26)). Let \(\rho \) be a convergent of \(U \) such that \(c_2 > |\rho| > c_1 \). Since \(|\rho|/|\rho'| < c_0, |\rho'| < c_0|\rho|^{-1} < c_0c_1^{-1} \). Since there are only a finite number of elements \(\xi \) of \(U \) such that \(|\xi| < c_2 \) and \(|\xi'| < c_0c_1^{-1} \) (cf. (12)), we get the result.

(28) **Theorem.** For every module \(U \), the set \(\mathcal{C}(U) \) is finite (cf. (17)).

Proof. Take \(\lambda \in \mathcal{O}_U^\times \) such that \(|\lambda| > 1 \). Given a convergent \(\rho \) of \(U \), take \(n \in \mathbb{Z} \) such that \(|\lambda|^{n-1} < |\rho| \leq |\lambda|^n \). Then \(|\lambda|^{-1} < |\rho\lambda^{-n}| \leq 1 \). Since \(\rho\lambda^{-n} \approx \rho \), we get the result by (27).

(29) We now turn to the problem of finding a complete set of representatives of the equivalence classes in \(\mathcal{C}(U) \), where \(U = \langle \alpha, 1 \rangle \). First of all, we have to find a convergent of \(U \) to get started. Let \(\alpha = (e + \sqrt{\Delta})/2b \in \mathbb{K} \), where \(b, e \in \mathbb{O} \). If \(\xi = y\alpha - x \in U \), then \(y = (b/\sqrt{\Delta})(\xi - \xi') \). Thus if \(|\xi| < 1 \) and \(|\xi'| < 1 \), then \(|y| < 2|b|/|\sqrt{\Delta}| \). In particular, if \(2|b| \leq |\sqrt{\Delta}| \), then \(y = 0 \) and 1 must be a convergent of \(U \).
(30) Suppose $2|b|/|\sqrt{\Delta}| > 1$ but not too large (cf. (32)). Let y range, in some convenient order, over the nonzero elements of O in the first quadrant (including the real axis but not the imaginary axis) such that $|y| \leq 2|b|/|\sqrt{\Delta}|$. For each y, choose $x \in O$ such that $|y\alpha - x| \leq 1$ and compute $|y\alpha' - x|$. If $|y\alpha' - x| \geq 1$ for all y and x, then 1 is a convergent of U.

(31) Assume that for some y as in (30), there is an $x \in a$ such that $|y\alpha - x| < 1$ and $|y\alpha' - x| < 1$. For each y, compute $|y\alpha - x|$ and $|y\alpha' - x|$. If $|y\alpha' - x| \leq 1$ for all y and x, then 1 is a convergent of U.

(32) In case $2|b|/|\sqrt{\Delta}|$ is large, the method of finding a convergent of U described in (30) and (31) is tedious and unsatisfactory. This is where the result of (24) comes to the rescue. Compute a_n as in (19) until we get $a_{k+l} = a_k$, $l > 0$, and consider $\beta = a_k$ and $V = \langle \beta, 1 \rangle$. With the notations as in (23) and (24),

$$2|d_k|/|\sqrt{\Delta}| = 2/|\beta - \beta'| \leq 2(\sqrt{2} + 1).$$

Thus we can find a convergent σ of V as in (29), (30) and (31) without much trouble. (It is likely that 1 is a convergent of V.) Let

$$A_k = \begin{pmatrix} a_k & a_{k-1} \\ b_k & b_{k-1} \end{pmatrix}$$

be as in (20) for α and put $\gamma = a_k - b_k\alpha$. Then $U = \langle \alpha, 1 \rangle = \langle b_{k-1}\alpha - a_{k-1}, \gamma \rangle = \gamma(\beta, 1) = \gamma V$. Thus $\gamma \sigma$ is a convergent of U.

(33) We now have a way to find a convergent $\rho_1 = p-q\alpha$ of $U = \langle \alpha, 1 \rangle$. If $\rho_1 = 1$, then put $Q_1 = I$. In any case, find r and $s \in \mathbb{O}$ such that $ps - qr = 1$ and put $Q_1 = \begin{pmatrix} p & r \\ q & s \end{pmatrix}$. Although it does not matter how we find such r and s, one definite way to find them is to apply the simple continued fraction algorithm to the “rational” element $\beta = p/q \in F^\times$. Compute a_n and b_n as in (20) for β. Then we arrive at $k \geq 0$ such that $qa_k - pb_k = \varepsilon \in O^\times$. Put $r = \varepsilon^{-1}a_k$ and $s = \varepsilon^{-1}b_k$. Put $\alpha_1 = Q_1^{-1}\alpha$ and $U_1 = \langle \alpha_1, 1 \rangle$. Since $Q_1^{-1}(\alpha_1) = \rho_1(\alpha_1)$,

$$Q_1(\begin{pmatrix} \alpha_1 \\ 1 \end{pmatrix}) = \rho_1^{-1}(\begin{pmatrix} \alpha \\ 1 \end{pmatrix})$$

and $U_1 = \rho_1^{-1}U$.

Since ρ_1 is a convergent of U, 1 is a convergent of U_1.

(34) LEMMA. If 1 is a convergent of $U = \langle \alpha, 1 \rangle$ and $\xi = y\alpha - x$ is a primitive element of U such that $|\xi| \leq 1$ and $|y| \geq 2$, then U contains a nonzero element β such that $|\beta| < 1$ and $|\beta'| < |\xi'|$.

PROOF. Let $\xi = y\alpha - x$ be a primitive element of U such that $|\xi| \leq 1$ and $|y| \geq 2$. Choose $p \in O$ such that $|\alpha - p| < 1$ and $|\alpha' - p|$ is least. Since 1 is a
convergent of \(U \), \(|a' - p| > 1\). Choose \(\varepsilon \in \mathcal{O}^\times \) such that \(\beta = \varepsilon(a - p) \) is in the first quadrant. Consider the half-planes

\[
H_1: \text{Re}(z) \leq \frac{1}{2}, \quad H_2: \text{Im}(z) \leq \frac{1}{2}, \quad H_3: \text{Re}(z) + \text{Im}(z) \leq 1.
\]

By the choice of \(p \) we have the following implications:

- If \(|\beta - 1| < 1\), then \(\beta' \in H_1 \).
- If \(|\beta - i| < 1\), then \(\beta' \in H_2 \).
- If \(|\beta - 1 - i| < 1\), then \(\beta' \in H_3 \).

Let \(A: |z| \geq 1 \). Since \(\beta \) is in the first quadrant and \(|\beta| < 1\), there are five cases:

1. \(|\beta - 1| < 1\) and \(|\beta - i| < 1\): put \(B = A \cap H_1 \cap H_2 \).
2. \(|\beta - 1| \geq 1\) and \(|\beta - 1 - i| < 1\): put \(B = A \cap H_2 \cap H_3 \).
3. \(|\beta - 1 - i| \geq 1\) and \(|\beta - 1 - i| \geq 1\): put \(B = A \cap H_2 \).
4. \(|\beta - i| \geq 1\) and \(|\beta - 1 - i| < 1\): put \(B = A \cap H_1 \cap H_3 \).
5. \(|\beta - i| \geq 1\) and \(|\beta - 1 - i| \geq 1\): put \(B = A \cap H_1 \).

Since \(\xi \) is primitive, \((x, y) = 1\). Since \(|\xi| \leq 1\), \(|\alpha - xy^{-1}| \leq |y|^{-1}\). Put \(r = |p - xy^{-1}| \).

The inequality

\[
|z - \varepsilon p| \geq |y| |z - \varepsilon xy^{-1}| = |yz - \varepsilon x|
\]

on \(z \) defines a disk \(D \) of radius \(r\sqrt{|y|/|y| - 1} \) with the center \(c \) on the line through \(\varepsilon p \) and \(\varepsilon xy^{-1} \) so that \(\varepsilon xy^{-1} \) is between \(\varepsilon p \) and \(c \) and \(|\varepsilon xy^{-1} - c| = r/(|y| - 1) \).

Since \(|y| \geq 2\), in any of the five cases above, if \(B \) is defined as indicated, then we see that \((B + \varepsilon p) \cap D = \emptyset\). Since \(\varepsilon a' \in B + \varepsilon p, \)

\[
|\beta'| = |\varepsilon a' - \varepsilon p| < |ya' - x| = |\xi'|.
\]

(35) Although it is possible for \(U \) to have two convergents \(\rho \) and \(\sigma \) such that \(|\rho| = |\sigma| \) and \(\rho \neq \sigma \), if \(\rho \), \(\sigma \) and \(\tau \) are convergents of \(U \) such that \(|\rho| = |\sigma| = |\tau|, \rho \neq \sigma \) and \(\rho \neq \tau \), then \(\sigma \equiv \tau \). In fact, by considering \(\rho^{-1} U \), we may assume that \(\rho = 1 \). Let \(\sigma \) and \(\tau \) be convergents of \(U \) such that \(|\sigma| = |\tau| = 1, \sigma \neq 1 \) and \(\tau \neq 1 \). Put \(\sigma = y\alpha - x \). If \(|y| \geq 2 \), then there is \(\beta \in U \) such that \(\beta \neq 0, |\beta| < 1 \) and \(|\beta'| < |\sigma'| = 1 \) by (34), which contradicts that 1 is a convergent of \(U \). Thus we may assume that \(\sigma = \alpha - x \) or \(\sigma = (1 + i)\alpha - x \). Similarly, we may assume that \(\tau = \alpha - y \) or \(\tau = (1 + i)\alpha - y \) for some \(y \in \mathcal{O} \). Since \(|\sigma| = |\tau| = 1, \) if \(\sigma \neq \tau \), then we get that \(\alpha \in \mathcal{O} \) or \(\alpha \in \mathcal{O} + \zeta \) for some 12th root of unity \(\zeta \). Since \(\alpha \notin \mathcal{O}, \) we get that \(\sigma \) and \(\tau \) are 12th roots of unity, and hence \(\sigma \equiv \tau \).

(36) Having chosen a convergent \(\rho_1 \) of \(U = \langle \alpha, 1 \rangle \), we are going to choose convergents \(\rho_2, \rho_3, \ldots \) of \(U \) so that \(|\rho_1| \geq |\rho_2| \geq |\rho_3| \geq \ldots, \rho_n \neq \rho_{n+1} \) for any \(n > 0 \), at most two \(\rho_n \)'s have the same modulus, and if \(\rho \) is a convergent of \(U \) such that \(|\rho_i| \geq |\rho_j| > |\rho_j| \) for some \(j > i > 0 \), then \(\rho \cong \rho_n \) for some \(n, \max\{1, i - 1\} \leq n < j \). (The possibility that \(\rho \cong \rho_{i-1} \) occurs only if \(|\rho_{i-1}| = |\rho_i| = |\rho| \) and \(i > 1 \).)

(37) Suppose we have found convergents \(\rho_1, \ldots, \rho_n \) of \(U = \langle \alpha, 1 \rangle \) satisfying the conditions stated in (36). We have done so for \(n = 1 \) (in which case the various conditions are vacuous). Moreover, assume that we have matrices \(A_1, \ldots, A_n \in \text{GL}_2(\mathcal{O}) \) of determinant 1 such that with \(A_n = \begin{pmatrix} a_n & c_n \\ b_n & d_n \end{pmatrix}, \rho_n = a_n - b_n \alpha \). For \(n = 1, A_1 = Q_1 \). (The meanings of \(a_n, b_n \) and \(A_n \) are now different from those in (20).)

Put \(\alpha_n = A_n^{-1} \alpha \) and \(U_n = \langle \alpha_n, 1 \rangle \). Since \(A_n^{-1} (\alpha) = \rho_n^{-1} \alpha \),

\[
A_n \begin{pmatrix} \alpha_n \\ 1 \end{pmatrix} = \rho_n^{-1} \begin{pmatrix} \alpha \\ 1 \end{pmatrix} \quad \text{and} \quad U_n = \rho_n^{-1} U.
\]
Since ρ_n is a convergent of U, 1 is a convergent of U_n.

(38) To find ρ_{n+1}, choose $p \in \mathcal{O}$ such that $|\alpha_n - p| \leq 1$ and $|\alpha'_n - p|$ is least. There are at most two choices for such p, and if so, choose the one of smaller modulus. If $n > 1$ and $|\rho_n^{-1}\rho_{n-1}| = 1$, then make sure that $|\alpha_n - p| < 1$. Choose $\varepsilon \in \mathcal{O}^\times$ such that

$$|\alpha_n - p - \frac{\varepsilon}{1 + i}| \leq \frac{1}{\sqrt{2}}$$

and put

$$\sigma_{n+1} = \begin{cases}
 p - \alpha_n & \text{if } \sqrt{2}c \geq |\alpha'_n - p|, \\
 (1 + i)p + \varepsilon - (1 + i)\alpha_n & \text{if } \sqrt{2}c < |\alpha'_n - p|,
\end{cases}$$

and then put $\rho_{n+1} = \rho_n \sigma_{n+1}$.

(39) To see that ρ_{n+1} produced in (38) is a next desired convergent of U, we claim that, if ξ is a primitive element of U_n such that $|\xi| \leq 1$ and $|\xi'| < |\sigma_{n+1}'|$, then $\xi \equiv 1$ or $\xi \equiv \rho_n^{-1}\rho_{n-1}$ (only if $n > 1$ and $|\rho_{n-1}| = |\rho_n|$). In fact, let ξ be such an element, say $\xi = y_n - x$. If $|y| \geq 2$, then there is $\beta = \alpha_n - q \in U_n$ such that $|\beta| < 1$ and $|\beta'| < |\xi'|$ by (34). Since $|\xi'| < |\sigma_{n+1}'| \leq |\alpha'_n - p|$, this contradicts the choice of p in (38). Thus $|y| < 2$, and we may assume that $\xi = \alpha_n - x$ or $\xi = (1 + i)\alpha_n - x$. First suppose that $\xi = \alpha_n - x$. If $|\xi| < 1$, then $|\xi'| \geq |\alpha'_n - p|$ by the choice of p. But since $|\alpha'_n - p| \geq |\sigma_{n+1}'|$, this is impossible. Thus $|\xi| = 1$. Suppose $\xi \not\equiv 1$. If $n = 1$ or $n > 1$ and $|\rho_{n-1}| > |\rho_n|$, then since $|\xi'| = 1$, $\xi \equiv \alpha_n - p$ by the choice of p and $\sigma_{n+1} = \rho_n \alpha$. But since $|\xi'| < |\sigma_{n+1}'|$, this is impossible. Thus $n > 1$ and $|\rho_{n-1}| = |\rho_n|$. Then since $|\rho_{n-1}^{-1}\rho_{n-1}| = |\xi'| = 1$ and $\rho_n^{-1}\rho_{n-1} \not\equiv 1$, $\xi \equiv \rho_n^{-1}\rho_{n-1}$ by (35). On the other hand, if $\xi = (1 + i)\alpha_n - x$, then it contradicts the choice of ε in (38). This proves the claim.

(40) Let ξ be any element of U_n such that $|\xi| < |\sigma_{n+1}|$ and $|\xi'| < |\sigma_{n+1}'|$. If $\xi \not\equiv 0$, then we may assume that ξ is primitive. Since $|\sigma_{n+1}| \leq 1$, $|\xi| = 1$ by (39), which is absurd. Thus $\xi = 0$ and σ_{n+1} is a convergent of U_n and hence ρ_{n+1} is a convergent of U. Clearly, $|\rho_n| \geq |\rho_{n+1}|$. Since $1 \not\equiv \sigma_{n+1}$, $\rho_n \not\equiv \rho_{n+1}$. If $n > 1$ and $|\rho_{n-1}| = |\rho_n|$, then $1 > |\sigma_{n+1}|$ and $|\rho_n| > |\rho_{n+1}|$. Let ρ be a convergent of U such that $|\rho_i| \geq |\rho| > |\rho_j|$, $0 < i < j \leq n + 1$. To see $\rho \equiv \rho_k$ for some k, max{1, $i - 1$} $\leq k < j$, we may assume that $|\rho_n| \geq |\rho| > |\rho_{n+1}|$. Then $\xi = \rho_n^{-1}\rho$ is a convergent of U_n such that $1 \geq |\xi| > |\sigma_{n+1}|$. Since ξ is a convergent, $|\xi'| < |\sigma_{n+1}'|$. Thus by (39), $\xi \equiv 1$ or $\xi \equiv \rho_n^{-1}\rho_{n-1}$, and hence $\rho \equiv \rho_n$ or $\rho \equiv \rho_{n-1}$. This completes the proof that ρ_{n+1} is a next desired convergent of U.

(41) Put

$$Q_{n+1} = \begin{pmatrix}
 p & -1 \\
 1 & 0
\end{pmatrix} \quad \text{or} \quad \begin{pmatrix}
 p & r \\
 1 + i & 1
\end{pmatrix}$$

according as $\sigma_{n+1} = p - \alpha_n$ or $p - (1 + i)\alpha_n$, where $r = (p - 1)/(1 + i)$. Note that in the second case, since $(p, 1 + i) = 1$, $1 + i$ divides $p - 1$ and $r \in \mathcal{O}$. In either case, det $Q_{n+1} = 1$. (Q_{n+1} is rarely of the second type.) Put

$$A_{n+1} = A_n Q_{n+1} \quad \text{and} \quad \alpha_{n+1} = Q_{n+1}^{-1}\alpha_n = A_{n+1}^{-1}\alpha.$$

Since $Q_{n+1}^{-1}(\alpha_n^1) = \sigma_{n+1}(\alpha_{n+1}^1)$,

$$A_{n+1}^{-1}(\alpha^1) = Q_{n+1}^{-1} A_{n+1}^{-1}(\alpha^1) = \rho_n Q_{n+1}^{-1}(\alpha^1) = \rho_{n+1}(\alpha_{n+1}^1),$$

and hence $\rho_{n+1} = a_{n+1} - b_{n+1} \alpha$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We now have a way to generate a sequence of convergents \(\rho_1, \rho_2, \rho_3, \ldots \) of \(U = \langle \alpha, 1 \rangle \) satisfying the conditions stated in (36). Moreover, corresponding to these convergents, we have matrices \(Q_1, Q_2, Q_3, \ldots \in \text{GL}_2(\mathcal{O}) \) of determinant 1 such that, for each \(n > 0 \), if
\[
A_n = \begin{pmatrix} a_n & c_n \\ b_n & d_n \end{pmatrix} = Q_1 \cdots Q_n,
\]
then \(\rho_n = a_n - b_n \alpha \) so that, with \(\alpha_n = A_n^{-1} \alpha \), \(A_n(\alpha_n) = \rho_n^{-1}(\alpha) \) and \(U_n = \langle \alpha_n, 1 \rangle = \rho_n^{-1}U \in \mathcal{D}(U) \).

Since \(\mathcal{D}(U) \) is finite by (28), \(U_{l+1} = U_k \) for some \(l \geq k > 0 \). Let \(l \) be the least such integer. Then we claim that \(k = 1 \). In fact, put \(\lambda = \rho_k \rho_{l+1}^{-1} \). Since \(\rho_k^{-1}U = U_k = U_{l+1} = \rho_{l+1}^{-1}U \), \(U = \lambda U \) and \(\lambda \in \mathcal{O}_U^\times \). Since \(|\rho_k| \geq |\rho_{l+1}| \), \(|\lambda| \geq 1 \). Since \(\lambda \in \mathcal{O}_U \), if \(|\lambda| = 1 \), then \(\lambda \) is a root of unity and \(\rho_k \cong \rho_{l+1} \). Thus \(|\lambda| > 1 \). Given a convergent \(\rho \) of \(U \), choose \(n \in \mathbb{Z} \) such that \(|\rho_k| |\lambda|^n > |\rho| > |\rho_k| |\lambda|^{-n} \).

Thus \(|\rho_k| \geq |\rho \lambda^{-n}| > |\rho \lambda^{-1}| = |\rho_{l+1}| \).

Theorem. If \(l \) is the period of \(U \), then \(\{\rho_1, \ldots, \rho_l\} \) is a complete set of representatives of the equivalence classes in \(\mathcal{C}(U) \) or equivalently
\[
\mathcal{D}(U) = \{U_1, \ldots, U_l\}, \quad U_n = \langle \alpha_n, 1 \rangle.
\]

Theorem. If \(l \) is the period of \(U \), then \(\lambda_0 = \rho_{l+1}^{-1} \rho_{l+1}^{-1} \) is a fundamental unit of \(\mathcal{O}_U^\times \), i.e., every \(\lambda \in \mathcal{O}_U^\times \) is uniquely of the form \(\lambda = \lambda_0^n \zeta \), where \(n \in \mathbb{Z} \) and \(\zeta \) is a root of unity.

Proof. Given \(\lambda \in \mathcal{O}_U^\times \), choose \(n \in \mathbb{Z} \) such that
\[
|\rho_1| \geq |\rho_1 \lambda \lambda_0^{-n}| > |\rho_1| |\lambda|^{-1} = |\rho_{l+1}|.
\]
Since \(\rho_1 \lambda \lambda_0^{-1} \cong \rho_1, \rho_1 \lambda \lambda_0^{-n} \cong \rho_1 \) and \(\lambda \lambda_0^{-n} = \zeta \) is a root of unity. The uniqueness is clear.
Here is a summary of the procedure for deciding if $A \sim B$ for given A and $B \in M(f)$. First compute $\alpha = \phi(A)$ and α_n as in (33) and (42) until we get $\alpha_{l+1} = \alpha_1$ for the first time. Next compute $\beta = \phi(B)$ and β_1 for β as in (33). Then $A \sim B$ iff $\beta_1 = \alpha_n$ for some $n, 1 \leq n \leq l$.

Given A and $B \in M(f)$, suppose that $A \sim B$ so that $\beta_1 = \alpha_n$, $1 \leq n \leq l$, as in (47), say $\beta_1 = \varepsilon \alpha_n + c$, $\varepsilon \in \mathcal{O}_K^{\times}$, $c \in \mathcal{O}$. Compute A_n for $\alpha = \phi(A)$ and $B_1 (= Q_1)$ for $\beta = \phi(B)$ and put

$$R_1 = B_1 \begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix} A_n^{-1}.$$

Then $R_1 \in GL_2(\mathcal{O})$ and $R_1 \alpha = \beta$, and hence $R_1 A R_1^{-1} = B$.

Given A, put $Z(A) = \{ R \in GL_2(\mathcal{O}) | RA = AR \}$, the centralizer of A in $GL_2(\mathcal{O})$. $Z(A)$ is a subgroup of $GL_2(\mathcal{O})$. If $R_1 A R_1^{-1} = B$, then the coset $R_1 Z(A)$ consists of those $R \in GL_2(\mathcal{O})$ such that $RAR^{-1} = B$.

If $\alpha = \phi(A)$ and $U = \langle \alpha, 1 \rangle$, then $Z(A)$ is canonically isomorphic to \mathcal{O}_K^{\times}.

Proof. Let $R \in Z(A)$. Since $R\alpha = \alpha$, $R(\alpha_1) = \lambda(\alpha_1)$ for some $\lambda \in K^{\times}$. Then $U = \langle \alpha, 1 \rangle = \lambda \alpha \lambda$ and hence $\lambda \in \mathcal{O}_K^{\times}$. This defines a map $R \mapsto \lambda: Z(A) \rightarrow \mathcal{O}_K^{\times}$, and it is clear that it is a homomorphism. Suppose $\lambda = 1$ for the image λ of $R \in Z(A)$. Then $R(\alpha \alpha') = (\alpha \alpha')$, and hence $R = I$. Thus the map is injective.

Let $\lambda \in \mathcal{O}_K^{\times}$. Then $U = \lambda U = \langle \lambda \alpha, \lambda \rangle$, and hence there is an $R \in GL_2(\mathcal{O})$ such that $R(\alpha_1) = \lambda(\alpha_1)$. Then $R\alpha = \alpha$ and $R \in Z(A)$. Thus the map $R \mapsto \lambda$ is onto \mathcal{O}_K^{\times}.

Let l be the period of $\alpha = \phi(A)$, say $\alpha_{l+1} = \varepsilon \alpha_1 + c$, $\varepsilon \in \mathcal{O}_K^{\times}$, $c \in \mathcal{O}$. Put $R_0 = A_{l+1}(\begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix}) A_1^{-1}$. Then $R_0 \in GL_2(\mathcal{O})$ and

$$R_0 \begin{pmatrix} \alpha_1 \\ 1 \end{pmatrix} = \rho_1^{-1} A_{l+1} \begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ 1 \end{pmatrix} = \rho_1^{-1} A_{l+1} \begin{pmatrix} \alpha_{l+1} \\ 1 \end{pmatrix} = \rho_1^{-1} \rho_{l+1} \begin{pmatrix} \alpha \alpha' \\ 1 \end{pmatrix} = \lambda_0 \begin{pmatrix} \alpha \alpha' \\ 1 \end{pmatrix}.$$

Since λ_0, together with a root of unity ζ, generates \mathcal{O}_K^{\times} by (46), in view of (50), R_0 together with an element of order 4, 8 or 12 corresponding to ζ, generates $Z(A)$.

(52) As a final remark, let us apply our method to find a fundamental unit of \mathcal{O}_K, $K = F(\sqrt{\Delta})$, where $\Delta \in \mathcal{O}$, $\Delta \neq 0, \pm 1$, Δ is square-free in \mathcal{O}. Put $\pi = 1 - i$ and

$$\alpha = \begin{cases} \sqrt{\Delta} & \text{if } \Delta \equiv 0 \pmod{\pi} \text{ or } \Delta \equiv \pm i \pmod{2}, \\ (1 + \sqrt{\Delta})/\pi & \text{if } \Delta \equiv \pm 1 + 2i \pmod{4}, \\ (1 + \sqrt{\Delta})/2 & \text{if } \Delta \equiv 1 \pmod{4}, \\ (1 + \sqrt{-\Delta})/2 & \text{if } \Delta \equiv -1 \pmod{4}. \end{cases}$$

Then $\mathcal{O}_K = \langle \alpha, 1 \rangle$. The proof of this is a straightforward exercise and is left to the reader. Clearly \mathcal{O}_K is the coefficient ring of the module \mathcal{O}_K. Thus by finding the convergents of \mathcal{O}_K we get a fundamental unit of \mathcal{O}_K via (46).

Appendix. Reducible case.

(1) We shall summarize the results for the case when the characteristic polynomial f is reducible over F. Since the proofs are straightforward, we shall omit them. Put $f(t) = (t - e_1)(t - e_2)$, where e_1 and $e_2 \in \mathcal{O}$.
(2) Given \(A \in M(f) \), we can find \(R \in GL_2(O) \) such that
\[
RAR^{-1} = \begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix},
\]
where \(a \) is in the first quadrant (including the real axis but not the imaginary axis).

(3) Suppose \(e_1 = e_2 = e \). If \(a \) and \(b \) are in the first quadrant and \((e_a) \sim (e_b) \), then \(a = b \).

(4) Let \(A = \begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix} \). If \(a = 0 \), then \(Z(A) = GL_2(O) \). If \(a \neq 0 \), then \(Z(A) \) is generated by \(\begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \), \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \).

(5) Assume \(e_1 \neq e_2 \). Put \(e = e_1 - e_2 \). Given \(a \in O \), we can find \(R \in GL_2(O) \) such that
\[
R \begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix} R^{-1} = \begin{pmatrix} e_1 & r \\ 0 & e_2 \end{pmatrix},
\]
where (i) \(r = 0 \), (ii) \(r/e = (1 + i)/2 \) or (iii) \(0 < \text{Re}(r/e) \leq \frac{1}{2} \) and \(0 \leq \text{Im}(r/e) < \frac{1}{2} \).

(6) If \(a/e \) and \(b/e \) are in the quarter square in the sense of (5) for \(r/e \) and \((e_{a1} \ a2) \sim (e_{b1} \ b2) \), then \(a = b \).

(7) Let \(a/e \) be as in (6) and \(A = \begin{pmatrix} e_{a1} & a \\ 0 & e_{a2} \end{pmatrix} \). Then \(Z(A) \) is generated by
(i) \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \), \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) if \(a/e = 0 \),
(ii) \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \), \(\begin{pmatrix} 0 & 1 \end{pmatrix} \) if \(a/e = 1/2 \),
(iii) \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \), \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) if \(a/e = (1 + i)/2 \),
(iv) \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \) otherwise.

Example 1.
\[
A = \begin{pmatrix} 16 + 33i & 17 + 67i \\ 11 + 14i & 15 + 30i \end{pmatrix}, \quad B = \begin{pmatrix} 26 + 61i & 1 + 51i \\ 7 & 5 + 2i \end{pmatrix}.
\]
The characteristic polynomial of \(A \) and \(B \) is \(f(t) = t^2 - (31 + 63i)t + 1 \) and its discriminant is \(\Delta = -3012 + 3906i \).
\[
\alpha = \phi(A) = \frac{1 + 3i + \sqrt{\Delta}}{2(11 + 14i)}, \quad \beta = \phi(B) = \frac{21 + 59i + \sqrt{\Delta}}{2(7)}.
\]
Computing \(Q_n \) and \(\alpha_n = Q_{n-1}^{-1} \alpha_{n-1} \) for \(\alpha \), we get
\[
\begin{align*}
Q_1 &= I, & \alpha_1 &= \alpha, \\
Q_2 &= \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_2 &= \frac{43 + 53i + \sqrt{\Delta}}{2(25 - 17i)}, \\
Q_3 &= \begin{pmatrix} 2i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_3 &= \frac{25 + 47i + \sqrt{\Delta}}{2(17 - 4i)}, \\
Q_4 &= \begin{pmatrix} 3i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_4 &= \frac{-1 + 55i + \sqrt{\Delta}}{2(13 - 56i)}.
\end{align*}
\]
\[
Q_5 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_5 = \frac{-25 + 57i + \sqrt{\Delta}}{2(29 - 5i)},
\]
\[
Q_6 = \begin{pmatrix} -1 + 2i & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_6 = \frac{-13 + 69i + \sqrt{\Delta}}{2(-5 - 20i)},
\]
\[
Q_7 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_7 = \frac{23 + 31i + \sqrt{\Delta}}{2(11 + 14i)} \equiv \alpha_1.
\]

On the other hand, \(\beta_1 = \beta\) and this is not \(\equiv\) to any \(\alpha_n\). Thus \(A \not\sim B\). Note that computation gives
\[
Q_2 = \begin{pmatrix} 4 + 8i & -1 \\ 1 & 0 \end{pmatrix}, \quad \beta_2 = \frac{35 + 53i + \sqrt{\Delta}}{2(51 - 7i)}
\]
for \(\beta\) and the next convergent of \((\beta_2, 1)\) after 1 is \((1 + i)\beta_2 - i\) (cf. (38) and (41)).

Example 2.
\[
A = \begin{pmatrix} 16 + 33i & 17 + 67i \\ 11 + 14i & 15 + 30i \end{pmatrix}, \quad B = \begin{pmatrix} 72 + 85i & -5 - 29i \\ 176 - 7i & -41 - 22i \end{pmatrix}
\]
This \(A\) is the same as in Example 1 and the characteristic polynomial of \(B\) is the same as that of \(A\).
\[
\beta = \phi(B) = \frac{113 + 107i + \sqrt{\Delta}}{2(176 - 7i)}, \quad B_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \beta_1 = \frac{-113 - 107i + \sqrt{\Delta}}{2(5 + 29i)}
\]
for \(\beta\), and we recognize that \(\beta_1 \equiv \alpha_5\), in fact, \(\beta = -i\alpha_5 + (-3 + i)\). Thus \(A \sim B\).

Now compute (cf. (42))
\[
A_5 = Q_1Q_2Q_3Q_4Q_5 = \begin{pmatrix} 15 - i & 14 + 3i \\ 7 - 2i & 7 \end{pmatrix},
\]
\[
R_1 = B_1 \begin{pmatrix} -i & -3 + i \\ 0 & 1 \end{pmatrix} A_5^{-1} = \begin{pmatrix} 7 - 2i & -15 + i \\ 19 - 20i & -47 + 32i \end{pmatrix}.
\]
We have \(R_1AR_1^{-1} = B\). Noting \(\alpha_7 = \alpha_1 + 1\), we compute (cf. (51))
\[
A_7 = \begin{pmatrix} -16 - 33i & -1 - 34i \\ -11 - 14i & -4 - 16i \end{pmatrix},
\]
\[
R_0 = A_7 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A_1^{-1} = \begin{pmatrix} -16 - 33i & -17 - 67i \\ -11 - 14i & -15 - 30i \end{pmatrix} = -A.
\]
Thus \(Z(A)\) is generated by \(A\) and \(iI\) and we get all \(R \in \text{GL}_2(\mathcal{O})\) such that \(RAR^{-1} = B\). In view of (50), the eigenvalue of \(A\), \(\lambda = (31 + 63i + \sqrt{\Delta})/2\), is a fundamental unit of \(\mathcal{O}_U\), where \(U = (\alpha, 1)\).

Example 3.
\[
A = \begin{pmatrix} 1 + 4i & -5i \\ 2 + 4i & -3 - i \end{pmatrix},
\]
\[
f(t) = t^2 - (2 + 3i)t + (-19 - 3i), \quad \Delta = 71,
\]
\[Q_1 = I, \quad \alpha_1 = \alpha = \frac{4 + 5i + \sqrt{\Delta}}{2(2 + 4i)} , \quad A_1 = I. \]

\(\sigma = \alpha_1 - 1 \) is a convergent of \(U_1 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). Take \(\sigma_2 = \sigma \) (cf. (38)).

\[Q_2 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_2 = \frac{3i + \sqrt{\Delta}}{2(-2 + 4i)} , \quad A_2 = Q_2. \]

\(\sigma = \alpha_2 \) is a convergent of \(U_2 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). But since \(\sigma_2^{-1} = -\sigma \), \(\sigma_3 \neq \sigma \).

\[Q_3 = \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_3 = \frac{8 + i + \sqrt{\Delta}}{2} , \quad A_3 = \begin{pmatrix} -1 - i & -1 \\ -i & -1 \end{pmatrix} , \]

\[Q_4 = \begin{pmatrix} 8 & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_4 = \frac{8 - i + \sqrt{\Delta}}{2(-2 + 4i)} , \quad A_4 = \begin{pmatrix} -9 - 8i & 1 + i \\ -1 - 8i & 1 \end{pmatrix}. \]

\(\sigma = \alpha_4 - i \) is a convergent of \(U_4 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). Take \(\sigma_5 = \sigma \).

\[Q_5 = \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_5 = \frac{-3i + \sqrt{\Delta}}{2(2 - 4i)} , \quad A_5 = \begin{pmatrix} 9 - 8i & 9 + 8i \\ 8 & 1 + 8i \end{pmatrix}. \]

\(\sigma = \alpha_5 \) is a convergent of \(U_5 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). But since \(\sigma_5^{-1} = -\sigma \), \(\sigma_6 \neq \sigma \),

\[Q_6 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_6 = \frac{4 - 5i + \sqrt{\Delta}}{2(-5i)} , \quad A_6 = \begin{pmatrix} 18 & -9 + 8i \\ 9 + 8i & -8 \end{pmatrix} , \]

\[Q_7 = \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_7 = \frac{6 + 5i + \sqrt{\Delta}}{2(-3 - 3i)} , \quad A_7 = \begin{pmatrix} -9 + 26i & -18 \\ -16 + 9i & -9 - 8i \end{pmatrix}. \]

\(\sigma = \alpha_7 + 1 \) is a convergent of \(U_7 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). Take \(\sigma_8 = \sigma \).

\[Q_8 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_8 = \frac{i + \sqrt{\Delta}}{2(3 - 3i)} , \quad A_8 = \begin{pmatrix} -9 - 26i & 9 - 26i \\ 7 - 17i & 16 - 9i \end{pmatrix}. \]

\(\sigma = \alpha_8 \) is a convergent of \(U_8 \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). But since \(\sigma_8^{-1} = -\sigma \), \(\sigma_9 \neq \sigma \),

\[Q_9 = \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_9 = \frac{6 + 5i + \sqrt{\Delta}}{2(-5)} , \quad A_9 = \begin{pmatrix} 35 - 35i & 9 + 26i \\ 33 - 2i & -7 + 17i \end{pmatrix} , \]

\[Q_{10} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_{10} = \frac{4 - 5i + \sqrt{\Delta}}{2(4 + 2i)} , \quad A_{10} = \begin{pmatrix} -26 + 61i & -35 + 35i \\ -40 + 19i & -33 + 2i \end{pmatrix}. \]

\(\sigma = \alpha_{10} + i \) is a convergent of \(U_{10} \) such that \(|\sigma| = 1 \) and \(\sigma \neq 1 \). Take \(\sigma_{11} = \sigma \).

\[Q_{11} = \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix} , \quad \alpha_{11} = \frac{-3i + \sqrt{\Delta}}{2(-4 + 2i)} , \quad A_{11} = \begin{pmatrix} 26 + 61i & 26 - 61i \\ -14 + 42i & 40 - 19i \end{pmatrix}. \]
We note that \(\alpha_{11} \equiv \alpha_1 \); \(\alpha_{11} = -i\alpha_1 + i \). Since \(|\sigma_{11}| = 1 \) and \(|\sigma_2| = 1 \), \(\sigma_2 \cong \sigma_{11}^{-1} \) (cf. (44)). Thus we take \(\sigma_{10} \sigma_{11} \) as \(\sigma_{10} \) and take \(Q_{10} Q_{11} \) as \(Q_{10} \):

\[
Q_{10} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -i & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 + i & 1 \\ -1 & -1 \end{pmatrix}, \quad A_{10} = \begin{pmatrix} 26 + 61i & 26 - 61i \\ -14 - 42i & 40 - 19i \end{pmatrix}.
\]

Since \(\alpha_{10} = -i\alpha_1 + i \),

\[
R_0 = A_{10} \begin{pmatrix} -i & i \\ 0 & 1 \end{pmatrix} A_{10}^{-1} = \begin{pmatrix} 61 - 26i & -35 - 35i \\ 42 + 14i & -2 - 33i \end{pmatrix},
\]

and \(Z(A) \) is generated by \(R_0 \) and \(iI \).

Example 4. \(\Delta = 71 \), \(K = F(\sqrt{71}) \). Since \(71 \equiv -1 \) (mod 4), with \(\alpha = (1 + \sqrt{-71})/2 \), \(\mathcal{O}_K = \langle \alpha, 1 \rangle \) (cf. (52)). Compute \(Q_n, \alpha_n \) and \(A_n \). (In this computation, we encounter convergents \(\sigma \) of some \(U_n \) such that \(|\sigma| = 1 \) and \(\sigma \not\equiv 1 \).)

\[
Q_1 = I, \quad \alpha_1 = \alpha, \quad A_1 = I,
\]

\[
Q_2 = \begin{pmatrix} 4i - 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_2 = \frac{-1 + 8i + \sqrt{-71}}{2(2 - 4i)}, \quad A_2 = Q_2,
\]

\[
Q_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_3 = \frac{-3 + \sqrt{-71}}{2(2 + 4i)}, \quad A_3 = \begin{pmatrix} -1 - 4i & -4i \\ 1 & -1 \end{pmatrix},
\]

\[
Q_4 = \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_4 = \frac{-1 - 4i + \sqrt{-71}}{2(-5i)}, \quad A_4 = \begin{pmatrix} -1 - i & 1 + i \\ -1 & 1 \end{pmatrix},
\]

\[
Q_5 = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_5 = \frac{5 + 6i + \sqrt{-71}}{2(-3 + 3i)}, \quad A_5 = \begin{pmatrix} -3 + 9i & -4 + 5i \\ 2 + i & 1 + i \end{pmatrix},
\]

\[
Q_6 = \begin{pmatrix} -i & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_6 = \frac{1 + \sqrt{-71}}{2(-3 - 3i)}, \quad A_6 = \begin{pmatrix} 5 + 8i & 3 - 9i \\ 2 - i & 2 - i \end{pmatrix},
\]

\[
Q_7 = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_7 = \frac{5 + 6i + \sqrt{-71}}{2(-5)}, \quad A_7 = \begin{pmatrix} -2 - 17i & -5 - 8i \\ -4 & -2 + i \end{pmatrix},
\]

\[
Q_8 = \begin{pmatrix} -i & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_8 = \frac{-5 + 4i + \sqrt{-71}}{2(-4 + 2i)}, \quad A_8 = \begin{pmatrix} -22 - 6i & 2 + 17i \\ -2 + 5i & 4 \end{pmatrix},
\]

\[
Q_9 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_9 = \frac{-3 + \sqrt{-71}}{2(-4 - 2i)}, \quad A_9 = \begin{pmatrix} -20 + 11i & 22 + 6i \\ 2 + 5i & 2 - 5i \end{pmatrix},
\]

\[
Q_{10} = \begin{pmatrix} -i & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_{10} = \frac{-1 + 8i + \sqrt{-71}}{2(i)}, \quad A_{10} = \begin{pmatrix} 33 + 26i & 20 - 11i \\ 7 - 7i & -2 - 5i \end{pmatrix},
\]

\(\alpha_{10} \equiv \alpha_1; \alpha_{10} = -i\alpha_1 + (4 + i)\). Since \(\rho_1 = 1 \), \(\rho_{10} = (33 + 26i) - (7 - 7i)\alpha \) is a fundamental unit of \(\mathcal{O}_K \) (cf. (46)).
REFERENCES

DEPARTMENT OF MATHEMATICS, CITY COLLEGE OF NEW YORK, NEW YORK, NEW YORK 10031