Quasilinear evolution equations and parabolic systems
HTML articles powered by AMS MathViewer
- by Herbert Amann
- Trans. Amer. Math. Soc. 293 (1986), 191-227
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814920-4
- PDF | Request permission
Abstract:
It is shown that general quasilinear parabolic systems possess unique maximal classical solutions for sufficiently smooth initial values, provided the boundary conditions are “time-independent”. Moreover it is shown that, in the autonomous case, these equations generate local semiflows on appropriate Sobolev spaces. Our results apply, in particular, to the case of prescribed boundary values (Dirichlet boundary conditions).References
- Paolo Acquistapace, Some existence and regularity results for abstract nonautonomous parabolic equations, J. Math. Anal. Appl. 99 (1984), no. 1, 9–64. MR 732703, DOI 10.1016/0022-247X(84)90234-8 —, On the abstract non-autonomous Cauchy problem in the case of constant domains, Preprint, Univ. di Pisa, 1983.
- Shmuel Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119–147. MR 147774, DOI 10.1002/cpa.3160150203
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 162050, DOI 10.1002/cpa.3160170104
- Herbert Amann, Periodic solutions of semilinear parabolic equations, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 1–29. MR 499089 —, Gewöhnliche Differentialgleichungen, de Gruyter, Berlin, 1983.
- Herbert Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 4, 593–676. MR 808425
- Herbert Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 47–83. MR 799657, DOI 10.1515/crll.1985.360.47
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- N. P. Bhatia and O. Hájek, Local semi-dynamical systems, Lecture Notes in Mathematics, Vol. 90, Springer-Verlag, Berlin-New York, 1969. MR 0251328
- Charles C. Conley and Joel A. Smoller, Algebraic and topological invariants for reaction-diffusion equations, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 3–24. MR 725516
- G. Da Prato, Abstract differential equations, maximal regularity, and linearization, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 359–370. MR 843572, DOI 10.1090/pspum/045.1/843572
- Giuseppe Da Prato and Pierre Grisvard, Equations d’évolution abstraites non linéaires de type parabolique, Ann. Mat. Pura Appl. (4) 120 (1979), 329–396 (French, with English summary). MR 551075, DOI 10.1007/BF02411952
- Giuseppe Da Prato and Eugenio Sinestrari, Hölder regularity for nonautonomous abstract parabolic equations, Israel J. Math. 42 (1982), no. 1-2, 1–19. MR 687930, DOI 10.1007/BF02765006
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Morris W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 1–64. MR 741723, DOI 10.1090/S0273-0979-1984-15236-4 O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, R. I., 1968.
- Alessandra Lunardi, Abstract quasilinear parabolic equations, Math. Ann. 267 (1984), no. 3, 395–415. MR 738260, DOI 10.1007/BF01456097
- Alessandra Lunardi, Global solutions of abstract quasilinear parabolic equations, J. Differential Equations 58 (1985), no. 2, 228–242. MR 794770, DOI 10.1016/0022-0396(85)90014-2
- Xavier Mora, Semilinear parabolic problems define semiflows on $C^{k}$ spaces, Trans. Amer. Math. Soc. 278 (1983), no. 1, 21–55. MR 697059, DOI 10.1090/S0002-9947-1983-0697059-8
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Michel Potier-Ferry, The linearization principle for the stability of solutions of quasilinear parabolic equations. I, Arch. Rational Mech. Anal. 77 (1981), no. 4, 301–320. MR 642550, DOI 10.1007/BF00280640
- Eugenio Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), no. 1, 16–66. MR 786012, DOI 10.1016/0022-247X(85)90353-1
- Eugenio Sinestrari and Paola Vernole, Semi-linear evolution equations in interpolation spaces, Nonlinear Anal. 1 (1976/77), no. 3, 249–261. MR 637091, DOI 10.1016/0362-546X(77)90034-7
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146 P. E. Sobolevskii, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. 49 (1966), 1-62.
- V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II, Trudy Mat. Inst. Steklov. 92 (1966), 233–297 (Russian). MR 0211071
- Hiroki Tanabe, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363–376. MR 125455 —, Equations of evolution, Pitman, London, 1979.
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- W. v. Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 231–258 (German). MR 313636
- Wolf von Wahl, Einige Bemerkungen zu meiner Arbeit “Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen” (Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II 1972, 231–258), Manuscripta Math. 11 (1974), 199–201 (German, with English summary). MR 340821, DOI 10.1007/BF01184957
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 191-227
- MSC: Primary 35K60; Secondary 34G20, 58D25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814920-4
- MathSciNet review: 814920