Approximation theorems for Nash mappings and Nash manifolds
HTML articles powered by AMS MathViewer
- by Masahiro Shiota
- Trans. Amer. Math. Soc. 293 (1986), 319-337
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814925-3
- PDF | Request permission
Abstract:
Let $0 \leq r < \infty$. A Nash function on ${\mathbf {R}^n}$ is a ${C^r}$ function whose graph is semialgebraic. It is shown that a ${C^r}$ Nash function is approximated by a ${C^\omega }$ Nash one in a strong topology defined in the same way as the usual topology on the space $\mathcal {S}$ of rapidly decreasing ${C^\infty }$ functions. A ${C^r}$ Nash manifold in ${\mathbf {R}^n}$ is a semialgebraic ${C^r}$ manifold. We also prove that a ${C^r}$ Nash manifold for $r \ge 1$ is approximated by a ${C^\omega }$ Nash manifold, from which we can classify all ${C^r}$ Nash manifolds by ${C^r}$ Nash diffeomorphisms.References
- D. R. J. Chillingworth and J. Hubbard, A note on nonrigid Nash structures, Bull. Amer. Math. Soc. 77 (1971), 429–431. MR 276229, DOI 10.1090/S0002-9904-1971-12726-X
- Gustave A. Efroymson, The extension theorem for Nash functions, Real algebraic geometry and quadratic forms (Rennes, 1981) Lecture Notes in Math., vol. 959, Springer, Berlin-New York, 1982, pp. 343–357. MR 683141
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York, Inc., New York, 1969. Third revised printing. MR 0248435
- S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 449–474. MR 173265 —, Ensembles semi-analytiques, Inst. Hautes Études Sci., 1965.
- Tadeusz Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 245–266. MR 412180
- John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405–421. MR 50928, DOI 10.2307/1969649 R. Palais, Equivariant real algebraic differential topology, Part I, Smoothness categories and Nash manifolds, Notes, Brandeis Univ., 1972.
- Masahiro Shiota, Classification of Nash manifolds, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 209–232 (English, with French summary). MR 723954
- Masahiro Shiota, Piecewise linearization of real analytic functions, Publ. Res. Inst. Math. Sci. 20 (1984), no. 4, 727–792. MR 762952, DOI 10.2977/prims/1195181110
- M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), no. 1, 155–162. MR 813829, DOI 10.1090/S0002-9939-1986-0813829-5
- M. Shiota and M. Yokoi, Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Amer. Math. Soc. 286 (1984), no. 2, 727–750. MR 760983, DOI 10.1090/S0002-9947-1984-0760983-2
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 319-337
- MSC: Primary 58A07
- DOI: https://doi.org/10.1090/S0002-9947-1986-0814925-3
- MathSciNet review: 814925