Rational singularities and almost split sequences
HTML articles powered by AMS MathViewer
- by Maurice Auslander
- Trans. Amer. Math. Soc. 293 (1986), 511-531
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816307-7
- PDF | Request permission
Abstract:
The main aim of this paper is to relate almost split sequences to singularity theory by showing that the McKay quiver built from the finite-dimensional representations of a finite subgroup $G$ of $\operatorname {GL} (2,{\mathbf {C}})$, where ${\mathbf {C}}$ is the complex numbers, is isomorphic to the $AR$ quiver of the reflexive modules of the quotient singularity associated with $G$.References
- M. Artin and J.-L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985), no. 1, 79–82. MR 769609, DOI 10.1007/BF01455531
- Maurice Auslander, On the purity of the branch locus, Amer. J. Math. 84 (1962), 116–125. MR 137733, DOI 10.2307/2372807
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978, pp. 1–244. MR 0480688
- Maurice Auslander and Jon F. Carlson, Almost-split sequences and group rings, J. Algebra 103 (1986), no. 1, 122–140. MR 860693, DOI 10.1016/0021-8693(86)90173-0
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- G. Gonzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 409–449 (1984) (French). MR 740077
- Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1978), no. 1, 21–34 (German). MR 463155, DOI 10.1007/BF01351494
- K. W. Roggenkamp and J. W. Schmidt, Almost split sequences for integral group rings and orders, Comm. Algebra 4 (1976), no. 10, 893–917. MR 412223, DOI 10.1080/00927877608822144
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 511-531
- MSC: Primary 16A64; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816307-7
- MathSciNet review: 816307