SOLVABILITY OF DIFFERENTIAL EQUATIONS WITH LINEAR COEFFICIENTS OF REAL TYPE

BY
RAINER FELIX

Abstract. Let L be the infinitesimal generator associated with a flow on a manifold M. Regarding L as an operator on a space of test functions we deal with the question if L has closed range. (Questions of this kind are investigated in [4, 1, 2].) We provide conditions under which $L + \mu I : \mathcal{S}(M) \to \mathcal{S}(M)$, $\mu \in \mathbb{C}$, has closed range, where $M = \mathbb{R}^n \times K$, K being a compact manifold; here $\mathcal{S}(M)$ is the Schwartz space of rapidly decreasing smooth functions. As a consequence we show that the differential operator $\sum_{i,j} a_{ij}(\partial / \partial x_j) + b$ defines a surjective mapping of the space $\mathcal{S}'(\mathbb{R}^n)$ of tempered distributions onto itself provided that all eigenvalues of the matrix (a_{ij}) are real. (In the case of imaginary eigenvalues this is not true in general [3].)

1. Preliminaries and notations. Let M be a differentiable manifold. We assume that \mathbb{R} acts on M (on the right) by diffeomorphisms; i.e. we have a one-parameter group $(\rho_t)_{t \in \mathbb{R}}$ of transformations (or a global flow) on M. Let L be the infinitesimal generator associated with this flow. We regard L as a differential operator on M given by

$$(1.1) \quad L \varphi (m) = \left. \frac{d}{dt} \varphi (m \cdot t) \right|_{t=0}, \quad m \in M, \varphi \in C^\infty (M).$$

Or, if $\varphi_t := \varphi \circ \rho_t$, $t \in \mathbb{R}$, we have $L \varphi = (d/dt) \varphi_t|_{t=0}$. Furthermore, L is invariant under (ρ_t), i.e.

$$(1.2) \quad L(\varphi_t) = (L \varphi)_t = \left. \frac{d}{dt} \varphi_t \right|_{t=0}$$

for all $t \in \mathbb{R}$. For $\mu \in \mathbb{C}$ we define the first order differential operator $L_\mu := L - \mu I$.

We denote by $\mathcal{D}(M)$ the space of C^∞-functions with compact support on M. Its dual space $\mathcal{D}'(M)$ is the space of distributions on M. A distribution $T \in \mathcal{D}'(M)$ is called relatively invariant with weight μ if

$$(1.3) \quad \langle T, \varphi_t \rangle = e^{\mu t} \langle T, \varphi \rangle$$

for all $\varphi \in \mathcal{D}(M)$, $t \in \mathbb{R}$. We write $\mathcal{D}'_\mu(M)$ for the space of relatively invariant distributions with weight μ.

Clearly, L_μ defines a continuous mapping of $\mathcal{D}(M)$ into itself. The aim of this paper is to provide conditions under which this mapping has closed range. By differentiating equation (1.3) it is seen that the closure $L_\mu \mathcal{D}(M)$ of the range of L_μ
in $\mathcal{D}(M)$ can be characterized as the orthogonal of $\mathcal{D}'(M)$ in $\mathcal{D}(M)$; we write

$$L_\mu^* \mathcal{D}(M) = \mathcal{D}'(M)^{\perp}. \quad (1.4)$$

Let $L_\mu^* : \mathcal{D}'(M) \to \mathcal{D}'(M)$ be the transpose of $L_\mu : \mathcal{D}(M) \to \mathcal{D}(M)$. Given a distribution $T \in \mathcal{D}'(M)$, by (1.4) we have

$$T \in \mathcal{D}'(M) \iff L_\mu^* T = 0. \quad (1.5)$$

Let $C'(M)$ be the space of r-times continuously differentiable functions on M, $r \in \mathbb{N}$. For $\varphi \in C^1(M)$ we have

$$\frac{d}{dt} \left(e^{-\mu t} \varphi_t \right) = e^{-\mu t} \left(L_\mu \varphi \right)_t. \quad (1.6)$$

Therefore, if $L_\mu \varphi = 0$ we have $\varphi_t = e^{\mu t} \varphi$ for all $t \in \mathbb{R}$.

Furthermore, let $L_\mu \varphi = f$, $\varphi \in \mathcal{D}(M)$, and suppose that, if $m \in M$ is given, $e^{-\mu t} f(m \cdot t)$ is integrable over the interval $-\infty < t < 0$ and that

$$\lim_{t \to -\infty} e^{-\mu t} \varphi(m \cdot t) = 0,$$

then from (1.6) we derive the solution formula

$$\varphi(m) = \int_{-\infty}^{0} e^{-\mu t} f(m \cdot t) \, dt. \quad (1.7)$$

Moreover, suppose that $e^{-\mu t} \varphi(m \cdot t)$ is integrable over the whole real line $-\infty < t < \infty$ and that $\lim_{t \to -\infty} e^{-\mu t} \varphi(m \cdot t) = 0$ for all $\varphi \in \mathcal{D}(M)$. Then the distribution $\lambda_{\mu, m} : \varphi \mapsto \int_{-\infty}^{0} e^{-\mu t} \varphi(m \cdot t) \, dt$ is relatively invariant with weight μ, i.e.

$$\lambda_{\mu, m} \in \mathcal{D}'(M). \quad (1.8)$$

Therefore, if $f \in L_\mu^* \mathcal{D}(M)$ we have the equation

$$\int_{-\infty}^{0} e^{-\mu t} f(m \cdot t) \, dt = - \int_{0}^{\infty} e^{-\mu t} f(m \cdot t) \, dt. \quad (1.9)$$

In this paper we are mainly concerned with the case that our manifold M is a product of \mathbb{R}^n with a d-dimensional compact differentiable manifold K. In this case there is a natural notion of the space $\mathcal{S}(M)$ of Schwartz functions and its dual space $\mathcal{S}'(M)$ of tempered distributions.

Assume that there are d vector fields Z_1, \ldots, Z_d on K such that for every $\tau \in K$ the tangent vectors $Z_1(\tau), \ldots, Z_d(\tau)$ span the tangent space $T_\tau(K)$ to K at τ. Then $\mathcal{S}(\mathbb{R}^n \times K)$ is the space of all smooth functions φ on $\mathbb{R}^n \times K$ such that the term

$$(1 + |x|^2)^{s/2} \partial_{x}^a Z_{\beta}^b \varphi(x, \tau)$$

is bounded with respect to $(x, \tau) \in \mathbb{R}^n \times K$ for any $s \in \mathbb{N}$ and for any multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_d)$, where α_j, $1 \leq j \leq n$, and β_k, $1 \leq k \leq d$, belong to the set \mathbb{N}_0 of nonnegative integers and $\partial_x^a := \partial^{[\alpha]} / \partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$ with $|\alpha| := \sum_{j=1}^{n} \alpha_j$ and $Z_{\tau}^b := Z_1^{b_1} \cdots Z_d^{b_d}$. Sometimes it is convenient to write Y_j for $\partial / \partial x_j$, $j = 1, \ldots, n$, and Y_{n+k} for Z_k, $k = 1, \ldots, d$; then we have $\partial_x^a Z_{\beta}^b = Y_1^{\alpha_1} \cdots Y_n^{\alpha_n} Y_{n+k}^{\beta_k} \cdots Y_d^{\beta_d}$ with $\gamma = (\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_d)$. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A C^∞-function $h(x, \tau, t)$ on $\mathbb{R}^n \times K \times \mathbb{R}$ is called \textit{of type E} (resp. \textit{of type P}) if for any $r \in \mathbb{N}_0$ and any multi-index γ of length $n + d$ there are $\eta, \theta, \sigma \in \mathbb{N}$ such that

\begin{equation}
Y_{x, \tau}^{\gamma} \left(\frac{\partial}{\partial t} \right)^r h(x, \tau, t) \leq \theta \left(1 + |x|^2 \right)^{\sigma/2} e^{\eta |t|}
\end{equation}

(resp. \begin{equation}
Y_{x, \tau}^{\gamma} \left(\frac{\partial}{\partial t} \right)^r h(x, \tau, t) \leq \theta \left(1 + |x|^2 \right)^{\sigma/2} (1 + t^2)^{\eta/2}
\end{equation}

for all x, τ, t. (Of course, this definition does not depend on the special chosen vector fields Z_1, \ldots, Z_d.) It is obvious that sums, products and derivatives of type E functions (resp. type P functions) are of type E (resp. of type P).

Let p and q be the projection of $\mathbb{R}^n \times K$ onto \mathbb{R}^n and K, respectively, and let p_j be the jth component of p. Our one-parameter group (ρ_t) of transformations is called \textit{of type E} (resp. \textit{of type P}) if the functions $p_j((x, \tau) \cdot t)$ and $\psi \circ q((x, \tau) \cdot t)$ are of type E (resp. type P) for all $j = 1, \ldots, n$ and for all $\psi \in C^\infty(K)$. In this case we are able to estimate x by $p((x, t) \cdot t) =: x'$ for any τ and t. In fact, let $(x', \tau') \cdot (-t) = (x, \tau)$; because

\begin{equation}
|p((x', \tau') \cdot (-t))|^2 \leq \theta \left(1 + |x'|^2 \right)^{\sigma/2} e^{\eta |t|}
\end{equation}

(resp. \begin{equation}
|p((x', \tau') \cdot (-t))|^2 \leq \theta \left(1 + |x'|^2 \right)^{\sigma/2} (1 + t^2)^{\eta/2}
\end{equation}

for some $\eta, \theta, \sigma \in \mathbb{N}$, we have

\begin{equation}
1 + |x|^2 \leq (1 + \theta) \left(1 + |p((x, \tau) \cdot t)|^2 \right)^{\sigma/2} e^{\eta |t|}
\end{equation}

(resp. \begin{equation}
1 + |x|^2 \leq (1 + \theta) \left(1 + |p((x, \tau) \cdot t)|^2 \right)^{\sigma/2} (1 + t^2)^{\eta/2}
\end{equation}

and therefore

\begin{equation}
1 + |p((x, \tau) \cdot t)|^2 \geq \delta \left(1 + |x|^2 \right)^{\epsilon/2} e^{-\xi |t|}
\end{equation}

(resp. \begin{equation}
1 + |p((x, \tau) \cdot t)|^2 \geq \delta \left(1 + |x|^2 \right)^{\epsilon/2} (1 + t^2)^{-\xi/2}
\end{equation}

for some $\delta, \epsilon, \zeta > 0$.

Clearly, for each $k \in \{1, \ldots, n + d\}$ there are C^∞-functions a_{ik} on $\mathbb{R}^n \times K \times \mathbb{R}$, $1 \leq i \leq n + d$, such that for any $\varphi \in C^\infty(\mathbb{R}^n \times K)$ we have

\begin{equation}
Y_k(\varphi_t)(x, \tau) = \sum_{i=1}^{n+d} a_{ik}(x, \tau, t)(Y_i \varphi)_t(x, \tau)
\end{equation}

for all x, τ, t. Similarly we have

\begin{equation}
\frac{d}{dt} \varphi_t(x, \tau) = \sum_{i=1}^{n+d} b_i(x, \tau, t)(Y_i \varphi)_t(x, \tau)
\end{equation}

where b_i, $1 \leq i \leq n + d$, are C^∞-functions on $\mathbb{R}^n \times K \times \mathbb{R}$.

Now let (ρ_t) be of type E (resp. of type P). Then all the functions a_{ik} and b_i are of type E (resp. of type P). This is evident by inserting p_j and $\psi \circ q$ for φ in (1.14) and (1.15), respectively. Reiterating formula (1.14) we derive that, given $t \in \mathbb{R}$, the
function \(\varphi \), belongs to \(\mathcal{S}(\mathbb{R}^n \times K) \) for any \(\varphi \in \mathcal{S}(\mathbb{R}^n \times K) \) and that the mapping \(\varphi \mapsto \varphi_t \) is a continuous mapping of \(\mathcal{S}(\mathbb{R}^n \times K) \) into itself. Hereby formula (1.13) is used. Together with (1.15) we derive that the infinitesimal generator \(L \) defines a continuous mapping of \(\mathcal{S}(\mathbb{R}^n \times K) \) into itself, and our previous considerations concerning \(\mathcal{D}(M) \) and \(\mathcal{D}'(M) \) remain valid with regard to \(\mathcal{S}(M) \) and \(\mathcal{S}'(M) \), \(M = \mathbb{R}^n \times K \).

2. Lemmata. Let \(M = \mathbb{R}^n \times K \) and let our one-parameter group \((\rho_t)\) be of type E. In the whole section we assume that there is \(\lambda \in \mathbb{R} \) such that

\[
(2.1) \quad p_1(m \cdot t) = e^{-\lambda t} p_1(m)
\]

for all \(t \in \mathbb{R} \), \(m = (x, \tau) \in M \). Then we have

\[
(2.2) \quad L_\mu(p_1 \varphi) = p_1 L_{\mu + \lambda} \varphi
\]

for any continuously differentiable function \(\varphi \) on \(M \).

The submanifold \(M^1 := \{m \in M \mid p_1(m) = 0\} = \mathbb{R}^{n-1} \times K \) is invariant under \((\rho_t)\). Let \((\rho_t')\) be the restriction of \((\rho_t)\) to \(M^1 \) and let \(L^1 \) be the associated infinitesimal generator. If \(\varphi \) is a function on \(M \), let \(\varphi^1 \) be its restriction to \(M^1 \). For any continuously differentiable function \(\varphi \) on \(M \) we have

\[
(2.3) \quad (L \varphi)^1 = L^1 \varphi^1.
\]

Lemma 1. Suppose that \((L^1_\mu)' : \mathcal{S}'(M^1) \rightarrow \mathcal{S}'(M^1)\) is surjective. If \(p_1 f \in L_\mu \mathcal{S}(M) \) for \(f \in \mathcal{S}(M) \), then \(f \in L_{\mu + \lambda} \mathcal{S}(M) \).

Proof. By (1.4), the assertion follows from the inclusion \(\mathcal{S}'(M^1) \subseteq p_1 \mathcal{S}'(M) \), which we are going to prove.

Let \(S \in \mathcal{S}'_{\mu+\lambda}(M) \). By division of distributions there is \(\psi \in \mathcal{S}(M) \) such that

\[
(2.4) \quad p_1 L_\mu \psi T_1 = L_{\mu + \lambda} S = 0;
\]

i.e. \(L_\mu T_1 \) is the trivial extension of a distribution \(W^1 \in \mathcal{S}'(M^1) \). By assumption, \(W^1 = (L^1_\mu)' R^1 \) with \(R^1 \in \mathcal{S}'(M^1) \). Let \(R \in \mathcal{S}'(M) \) be the trivial extension of \(R^1 \) and let \(T := T_1 - R \). Then we have \(p_1 T = S \), and \(T \in \mathcal{S}'(M) \) since

\[
\left\langle L_\mu T, \varphi \right\rangle = \left\langle W^1 - (L^1_\mu)' R^1, \varphi^1 \right\rangle = 0 \quad \text{for all } \varphi \in \mathcal{S}(M) \quad \square
\]

For convenience, we define the set \((L_\mu \mathcal{S}(M))_k, k \in \mathbb{N}_0,\) consisting of all functions \(f \in L_\mu \mathcal{S}(M) \) for which there are functions \(\psi_k \in \mathcal{S}(M) \) and \(f_k \in L_{\mu + k \lambda} \mathcal{S}(M) \) such that \(f = L_\mu \psi_k + p_1 f_k \). Clearly, \((L_\mu \mathcal{S}(M))_{k+1} \subseteq (L_\mu \mathcal{S}(M))_k \) by (2.2). Put

\[
(L_\mu \mathcal{S}(M))_\infty := \bigcap_{k \in \mathbb{N}} (L_\mu \mathcal{S}(M))_k.
\]

Lemma 2. Suppose that \((L^1_\mu)' : \mathcal{S}'(M^1) \rightarrow \mathcal{S}'(M^1)\) is surjective for all \(\kappa = 0, \ldots, k - 1 \). Then \(L_\mu \mathcal{S}(M) = (L_\mu \mathcal{S}(M))_{k-1} \).
Proof. We prove the lemma by induction on \(k \). For \(k = 0 \) the assertion is trivial. Now assume \(f = L_{\mu} \psi_k + p_k^t f_k \) with \(\psi_k \in \mathcal{S}(M) \) and \(f_k \in L_{\mu + k \lambda} \mathcal{S}(M) \). Obviously, \(f_k^t \in L_{\mu + k \lambda}^1 \mathcal{S}(M) \). Since \(L_{\mu + k \lambda} \mathcal{S}(M^1) \) is closed by assumption, \(f_k^t = \psi^1_k \in \mathcal{S}(M^1) \) for some \(\psi^1 \in \mathcal{S}(M^1) \). Select \(\psi \in \mathcal{S}(M) \) such that \(\psi^1 \) is the restriction of \(\psi \) to \(M \). Then \(f_k - L_{\mu + k \lambda} \psi \) vanishes on \(M^1 \). Therefore it can be divided by \(p_1 \); i.e. there is a function \(f_{k + 1} \in \mathcal{S}(M) \) such that \(f_k - L_{\mu + k \lambda} \psi = p_1 f_{k + 1} \). By Lemma 1, \(f_{k + 1} \in L_{\mu + (k + 1) \lambda} \mathcal{S}(M) \). Put \(\psi_{k + 1} := \psi_k + p_k^t \psi \). Using (2.2) we get the desired equation for \(k + 1 \).

Lemma 3. Let \(\lambda \neq 0 \). Suppose that \(L_{\mu} \mathcal{S}(M) = (L_{\mu} \mathcal{S}(M))^\infty \). Then \(L_{\mu} \mathcal{S}(M) \) is closed in \(\mathcal{S}(M) \).

Proof. Replacing \((\rho_+), \mu\) by \((\rho_-), -\mu\) in case of need, we may assume that \(\lambda > 0 \).

Let \(f \in L_{\mu} \mathcal{S}(M) \). For any \(k \in \mathbb{N} \), we take \(\psi_k \in \mathcal{S}(M) \) and \(f_k \in L_{\mu + k \lambda} \mathcal{S}(M) \) such that \(f = L_{\mu} \psi_k + p_k^t f_k \). In the course of the proof we determine \(k_0 \in \mathbb{N} \) sufficiently large for our need. First of all we assume that the real part \(\nu_k := \Re \nu_k \) of \(\nu_k := \psi_k + p_k^t \psi \) is positive for \(k \geq k_0 \). For \(k \geq k_0 \) we put

\[
\varphi_k(m) := \psi_k(m) - p_k^t(m) \int_{-\infty}^{\infty} e^{-\nu t} f_k(m \cdot t) \, dt, \quad m \in M.
\]

It is easily seen that the distribution \(\lambda_{\nu_k, m} \) (see (1.8)) is well defined for all \(k \geq k_0 \) and \(m \in M \setminus M^1 \). In fact, for \(t < 0 \) we apply (2.1) and get the estimate

\[
|\varphi(m \cdot t)| \leq \frac{c(\varphi, r)}{|p_1(m)|} e^{r\lambda t}, \quad \varphi \in \mathcal{S}(M),
\]

where \(r \) is an arbitrary integer \(\geq 0 \) and \(c(\varphi, r) \) is constant with respect to \(m \) and \(t \). Therefore, by (1.9), for \(m \in M \setminus M^1 \), equation (2.5) can be written in the following form:

\[
\varphi_k(m) = \psi_k(m) + p_k^t(m) \int_{-\infty}^{0} e^{-\nu t} f_k(m \cdot t) \, dt.
\]

Now, by induction on \(r \in \mathbb{N} \) we see: For any \(r \in \mathbb{N} \) there is \(k_0 \in \mathbb{N} \) such that \(\varphi_k \in C'(M) \) for \(k \geq k_0 \), in fact, for any multi-index \(\gamma \) with \(|\gamma| \leq r \) the derivative \(Y^\gamma(\varphi_k - \psi_k)(m) \) is a finite sum of terms of the form

\[
(2.7) \quad cp_k^t(m) \int_{-\infty}^{0} e^{-\nu t} h(m, t)(Y^\gamma f_k)(m \cdot t) \, dt,
\]

where \(c \in C \), \(s' \in \mathbb{N} \) depend on \(k \), \(s' \geq k - |\gamma| \), and \(h(m, t) \) is a \(C^\infty \)-function of type \(E \) independent of \(k \); \(|\gamma| \leq |\gamma| \), \(a = 0 \), \(b = \infty \). Hereby, (1.14) is used.

For \(m \in M \setminus M^1 \) we can apply (2.6) and, proceeding from (2.7), we can express \(Y^\gamma(\varphi_k - \psi_k)(m) \) by a finite sum of terms of the form (2.8) with \(a = -\infty \), \(b = 0 \).

Now let us prove that for any \(s \in \mathbb{N} \) and for any multi-index \(\gamma \) there is \(k_0 \in \mathbb{N} \) such that for \(k \geq k_0 \) the term

\[
(2.9) \quad (1 + |p(m)|^2)^{s/2} |Y^\gamma \varphi_k(m)|
\]
is bounded with respect to \(m \in M \). In view of (2.8) and by continuity it is sufficient to prove the boundedness of the terms

\[
(2.10) \quad \left(1 + |p(m)|^2\right)^{s/2} |p^*_t(m)| \int_a^b e^{-v_t} |h(m, t)| \left| Y^* f_k(m \cdot t) \right| \, dt
\]
on the domain \(\{0 \leq |p_1(m)| \leq 1\} \) for \(a = 0, b = \infty \) and on the domain \(\{|p_1(m)| \geq 1\} \) for \(a = -\infty, b = 0 \). For \(a = 0, b = \infty \) we use (1.13); since \(f_k \in \mathcal{S}(M) \) we can estimate (2.10) by

\[
(2.11) \quad \left(1 + |p(m)|^2\right)^{s/2} \int_0^\infty e^{-v_t} |h(m, t)| \frac{C(f_k, N)}{\delta N \left(1 + |p(m)|^2\right)^{sN/2} e^{-\alpha N t}} \, dt,
\]
where \(N \) is a positive integer which satisfies \(\epsilon N \geq s + \sigma \) with \(\sigma \) from (1.11). The boundedness of (2.11) is obvious if \(k_0 \) is sufficiently large. For \(a = -\infty, b = 0 \) we use (2.1). Let \(k \geq k_0 \) be given, we choose \(N \) as above and take a positive integer \(r > s' \); then we get an estimate of (2.10) by the term

\[
(2.12) \quad \left(1 + |p(m)|^2\right)^{s/2} |p^*_t(m)| \int_{-\infty}^0 e^{-v_t} |h(m, t)| \frac{C(f_k, N, r)}{\delta N \left(1 + |p(m)|^2\right)^{sN/2} e^{-\alpha N t} e^{-\lambda r} |p_1(m)|} \, dt
\]
which is obviously bounded if \(r \) is sufficiently large.

Now let \(k_0 \) be sufficiently large and let \(k \geq k_0 \). From (2.5) and (2.2) we get

\[
(2.13) \quad L_\mu \varphi_k = L_\mu \varphi_k = p^*_t L_\nu \varphi_k,
\]
where

\[
g_k(m) := \int_0^\infty e^{-v_t} f_k(m \cdot t) \, dt.
\]
Applying (1.6) with \(\varphi = g_k, \mu = \nu_k \) for \(t = 0 \) we get

\[
(2.14) \quad L_\nu \varphi_k = -f_k
\]
and therefore

\[
(2.15) \quad L_\mu \varphi_k = f
\]
for any \(k \geq k_0 \).

From (1.6) we derive that \(L_\mu \varphi = 0 \) implies \(\varphi = 0 \) for \(\varphi \in C^1(M) \) vanishing at infinity; in fact, for \(m \in M \setminus M^1 \) we have \(\varphi(m \cdot t) = e^{\mu t} \varphi(m) \) and therefore \(\varphi(m) = 0 \) because \(m \cdot t \to \infty \) for \(t \to -\infty \) by (2.1).

Therefore, looking at (2.15), we see that \(\varphi_k \) does not depend on \(k \); i.e. \(\varphi_k =: \varphi \) for all \(k \geq k_0 \). Thus, by (2.9), \(\varphi \in \mathcal{S}(M) \).

Lemma 4. Let \(\Re \mu \neq 0 \). Suppose that \((\rho_1) \) is of type \(P \). Then \((L_\mu)'^* : \mathcal{S}'(M^1) \to \mathcal{S}'(M^1) \) is surjective.

Proof. Replacing \((\rho_t) \) and \(\mu \) by \((\rho_{-t}) \) and \(-\mu \) in case of need, we may assume that \(\Re \mu < 0 \).
By (1.6), $L^1_\mu : \mathcal{S}(M^1) \to \mathcal{S}(M^1)$ is injective. To prove that L^1_μ is also surjective we put
\begin{equation}
(2.16)\quad \varphi^1(m^1) := \int_{-\infty}^{0} e^{-\mu t} f^1(m^1 \cdot t) \, dt, \quad m^1 = (x^1, \tau) \in M^1,
\end{equation}
for a given $f^1 \in \mathcal{S}(M^1)$ and show that $\varphi^1 \in \mathcal{S}(M^1)$.

In fact, by equation (1.14), for any $s \in \mathbb{N}$ and for any multi-index γ the term $(1 + |x^1|^2)^{s/2} Y^\gamma \varphi^1(m^1)$ is a finite sum of terms of the form
\begin{equation}
\int_{-\infty}^{0} e^{-\mu t} h^1(m^1, t) g^1(m^1 \cdot t) \, dt
\end{equation}
where $g^1 \in \mathcal{S}(M^1)$ and $h^1(m^1, t)$ is a C^∞-function of type P. Using (1.13) we see that $|h^1(m^1, t) g^1(m^1 \cdot t)|$ can be estimated by $c(1 + t^2)^{s/2}$ with some $r \in \mathbb{N}$ and some constant $c > 0$.

Lemma 5. Let $\lambda \neq 0$. Suppose that (ρ^1) is of type P and that $\rho^1(x^1, m^1) = (e^{-\mu t} x^1, \rho(t^1(m^1)))$ for $(x^1, m^1) \in M \cong \mathbb{R} \times M^1$. Then $L^1_\mu \mathcal{S}(M)$ is closed in $\mathcal{S}(M)$.

Proof. If $\text{Re}\, \mu + k\lambda \neq 0$ for all $k \in \mathbb{N}_0$, the assertion follows by Lemmas 4, 2 and 3.

Assume that $\text{Re}\, \mu + k\lambda = 0$ for some $k \in \mathbb{N}_0$. Given $f \in L^1_\mu \mathcal{S}(M)$, by Lemmas 4 and 2 there are $\psi^k \in \mathcal{S}(M)$ and $f_k \in L^1_{\mu + k\lambda} \mathcal{S}(M)$ such that $f = L^1_\mu \psi^k + \rho^1_\mu f_k$. Therefore, by (2.2), we have only to prove that $L^1_{\mu + k\lambda} \mathcal{S}(M)$ is closed; i.e. it remains to prove that $L^1_\mu \mathcal{S}(M)$ is closed for $\mu \in \mathbb{C}$ with $\text{Re}\, \mu = 0$.

Let $\text{Re}\, \mu = 0$. Using the assumption we derive
\begin{equation}
(2.17)\quad \frac{\partial}{\partial x^1} L^1_\mu \varphi = L^1_{\mu + \lambda} \frac{\partial \varphi}{\partial x^1}
\end{equation}
for all $\varphi \in \mathcal{S}(M)$. From the previous considerations we know that $L^1_{\mu + \lambda} \mathcal{S}(M)$ is closed. It follows that $L^1_{\mu + \lambda} \mathcal{S}(M) \to L^1_{\mu + \lambda} \mathcal{S}(M)$ is an isomorphism, because $L^1_{\mu + \lambda}$ is injective by (1.6). Therefore, since
\begin{equation}
\mathcal{F}_1 := \left\{ \frac{\partial \varphi}{\partial x^1} \bigg| \varphi \in \mathcal{S}(M) \right\}
\end{equation}
is closed, $L^1_{\mu + \lambda} \mathcal{F}_1$ is closed. Consequently, by (2.17), $(\partial/\partial x^1) L^1_\mu \mathcal{S}(M)$ is closed. Since $\partial/\partial x^1 : \mathcal{S}(M) \to \mathcal{F}_1$ is an isomorphism, it follows that $L^1_\mu \mathcal{S}(M)$ is closed.

3. Main results. Let us briefly sum up our assumptions and notations: We deal with a manifold $M = \mathbb{R}^n \times K$, where K is a d-dimensional compact differentiable manifold with the property that there are d vector fields Z_1, \ldots, Z_d on K such that for each $\tau \in K$ the tangent space to K at τ is spanned by the tangent vectors $Z_1(\tau), \ldots, Z_d(\tau)$. For $(x, \tau) \in \mathbb{R}^n \times K$ we put $p_j(x, \tau) := x_j$ and $q(x, \tau) := \tau$. Let $(\rho_t)_{t \in \mathbb{R}}$ be a one-parameter group of transformations acting on M and let L be the associated infinitesimal transformation (see (1.1)). For $\mu \in \mathbb{C}$ we define the differential operator $L^1_\mu := L - \mu 1$.
THEOREM. Let \((\rho_j)\) be of type E. Given \(k \in \mathbb{N}, 1 \leq k \leq n,\) let \(M^j := \{(x, \tau) \in M|x_1 = \cdots = x_j = 0\}\) be invariant under \((\rho_j)\) for \(j = 1, \ldots, k.\) We assume that the restriction of \((\rho_j)\) to \(M^k\) is of type P and that the projection of \(\rho_j(x, \tau)\) onto \(M^k\) does not depend on \(x_1, \ldots, x_k.\) Suppose that there are real numbers \(\lambda_j, 1 \leq j \leq n, \lambda_j \neq 0\) for \(j = 1, \ldots, k, \lambda_j = 0\) for \(j = k + 1, \ldots, n,\) such that \(p_j((x, \tau) \cdot t)\) has the form
\[
(3.1) \quad p_j((x, \tau) \cdot t) = e^{-\lambda_j x_j} + w_j(x_1, \ldots, x_{j-1}, \tau, t), \quad j = 1, \ldots, n,
\]
where \(w_j\) are functions independent of \(x_j, \ldots, x_n.\)

Then \(L_\mu: \mathcal{S}(M) \to \mathcal{S}(M)\) is injective and its range is closed.

PROOF. First of all, it is easy to see that (2.1) with \(\lambda = \lambda_1\) will follow from (3.1). In fact, we have
\[
w_1(\tau, t) = p_1((0, \tau) \cdot t) - e^{-\lambda_1 t} 0
\]
and \(p_1((0, \tau) \cdot t) = 0\) since \(M^1\) is invariant under \((\rho)\) by assumption. From (2.1) we conclude that the orbit \(\{(x, \tau) \cdot t| t \in \mathbb{R}\}\) is unbounded whenever \(x_1 \neq 0.\) Together with (1.6) we see that \(L_\mu\) is injective for any \(\mu \in \mathbb{C}.\)

Now let us prove by induction on \(k\) that \(L_\mu \mathcal{S}(M)\) is closed in \(\mathcal{S}(M)\) for each \(\mu \in \mathbb{C}.\) For \(k = 1\) the assertion follows by Lemma 5. Let \(k > 1.\) By induction hypothesis, \(L_\mu \mathcal{S}(M)\) is closed in \(\mathcal{S}(M)\) and \(L_\mu: \mathcal{S}(M) \to \mathcal{S}(M)\) is injective by the consideration above. Since \(\mathcal{S}(M)\) is a Fréchet space it follows that the transpose \((L_\mu)^*: \mathcal{S}'(M) \to \mathcal{S}'(M)\) is surjective for all \(\mu \in \mathbb{C}.\) Thus, by Lemmas 2 and 3, \(L_\mu \mathcal{S}(M)\) is closed.

EXAMPLE. On \(M = \mathbb{R}^n \times T^d (T^d = d\)-dimensional torus), \(n, d \in \mathbb{N}_0,\) we consider the one-parameter group
\[
\rho_j(x, \tau) = \left(x_1 e^{\lambda_1 \tau}, \ldots, x_j e^{\lambda_j \tau}, \tau_1 e^{\alpha_1 \tau}, \ldots, \tau_d e^{\alpha_d \tau}\right),
\]
where \(\lambda_1, \ldots, \lambda_n, \alpha_1, \ldots, \alpha_d \in \mathbb{R}.\) The infinitesimal generator \(L\) associated with \((\rho_j)\) is given by
\[
L \psi(x, \tau) = \sum_{j=1}^{n} \lambda_j x_j \frac{\partial \psi}{\partial x_j}(x, \tau) + \sum_{k=1}^{d} \alpha_k \frac{\partial \psi}{\partial \tau_k}(x, \tau).
\]
By the Theorem, \(L_\mu \mathcal{S}(M)\) is closed in \(\mathcal{S}(M)\) for any \(\mu \in \mathbb{C}\) provided that \(n > 0\) and \(\lambda_j \neq 0\) at least for one \(j.\) (Compare [4, Example 2].) In general, \(L_\mu \mathcal{S}(M)\) is not closed for \(n = 0 [4, Example 1].\) Particularly, the range of the restriction of \(L\) to \(T^d\) may be not closed in spite of the fact that \(L\) itself has closed range.

Furthermore, putting \(d = 0\) and assuming \(\lambda_j \neq 0\) for one \(j\) we can conclude that \(L: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)\) is surjective. This should be compared with Miwa’s result [5] affirming that \(L: \mathcal{B}(\mathbb{R}^n) \to \mathcal{B}(\mathbb{R}^n)\) is surjective if additionally it is supposed that \(|\lambda_j| \leq 1\) for all \(j = 1, \ldots, n,\) where \(\mathcal{B}(\mathbb{R}^n)\) is the set of hyperfunctions on \(\mathbb{R}^n.\)

COROLLARY. Given a first-order differential operator \(\neq 0\) on \(\mathbb{R}^n\) with linear coefficients
\[
D = \sum_{i,j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_i} + b, \quad a_{ij}, b \in \mathbb{R}.
\]
Suppose that all eigenvalues of the matrix \((a_{ij})\) are real.

Then \(D: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)\) is surjective.
Proof. After change of basis we may assume that the matrix \(A = (a_{ij}) \) has Jordan form
\[
\begin{pmatrix}
J_1 & & \\
& J_2 & \\
& & \ddots & \\
& & & J_r
\end{pmatrix}
\]
with Jordan boxes
\[
J_\rho = \begin{pmatrix}
\lambda_\rho & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
\end{pmatrix}, \quad \lambda_\rho \in \mathbb{R}, 1 \leq \rho \leq r,
\]
which are arranged in such a manner that \(\lambda_\rho \neq 0 \) for \(\rho = 1, \ldots, k \) and \(\lambda_\rho = 0 \) for \(\rho = k + 1, \ldots, r \), where \(0 \leq k \leq r \). It is easily seen that \(D = L_\mu' \), where \(L \) is the infinitesimal generator associated with the one-parameter group \(\rho_\mu(x) = e^{-tA}x \) and \(\mu = \text{trace}(A) - b \). Therefore it is sufficient to show that \(L_\mu : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \) is injective and has closed range.

Let \(k = 0 \). If \(\mu \neq 0 \), the assertion follows by Lemma 4. If \(\mu = 0 \), the assertion follows by [3].

Now let \(k > 0 \). Then we can apply the Theorem, where \(K \) is assumed to be trivial.

References
5. T. Miwa, On the existence of hyperfunctions solutions of linear differential equations of the first order

Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use