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SIMPLE HOMOTOPY TYPE OF FINITE 2-COMPLEXES

WITH FINITE ABELIAN FUNDAMENTAL GROUP

BY

M. PAUL LATIOLAIS

ABSTRACT.

Theorem 1. Let K be a finite 2-dimensional C W-complex with irdK) finite and

abetian. Then every element of the Whitehead group of K is realizable as the torsion of a

self-homotopy equivalence on K.

Theorem 2. Homotopy equivalence and simple homotopy equivalence are the same

for finite 2-dimensional CW-complexes with finite abelian fundamental groups.

0. Introduction. It is known that there exist finite «-complexes for all n > 2 which

are homotopy equivalent but not simply homotopy equivalent. In this paper, we

show that in dimension 2 homotopy type and simple homotopy type are the same

when the fundamental group of the finite 2-dimensional complexes is finite and

abelian.

The technique used is to show that all the elements of the Whitehead group of a

complex K are realizable as torsions of self-equivalences on K.

1. An important example. Dyer and Sieradski [DS] showed in 1973 that two

2-dimensional CW-complexes whose fundamental group was Zn were homotopy

equivalent if and only if they were simple homotopy equivalent. The next case to

consider would be ZnX Zm. We want to show that any 2-dimensional complex with

fundamental group Zn X Zm realizes all of its Whitehead group as torsions of

self-equivalences. (i;(K) denotes the group of self-homotopy equivalences of K.)

Theorem 1.1. Let K be the standard 2-complex of the presentation P =

[a, b\a", bm,[a, £>]}. Then every element of ~Wr\(K) is realizable as t(/) for some

f^è(K).

To prove the above theorem, we need the following three lemmas.

Lemma 1.2. Suppose G is a group with generating set [a¡\i e /} for some index set

I. Let A: Z(G) —> Z be the augmentation map (i.e., the ring homomorphism taking g

to 1 for each geG). Then each element 6 e keryl is of the form

6 = £<i>,(a, — 1)    for some elements t¡t¡ e Z(G).
i

Proof. See [F, p. 549].

Received by the editors June 1, 1984 and, in revised form, February 18, 1985. Presented to the Society

in Louisville, Kentucky, on January 28, 1984.

1980 Mathematics Subject Classification. Primary 57M20, 57Q10.

©1986 American Mathematical Society

0002-9947/86 $1.00 + $.25 per page

655License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



656 M. P. LATIOLAIS

Lemma 1.3. Let K be the standard complex of the presentation [a,b\a",bm,

aba'lb1} and let K be the universal cover of K with a chosen lift ë0 of the single 0-cell

in K. Consider C¡(K) as a Zitf-module generated by the preferred lifts of reach i-cell.

Then H2(K) is generated by the set

(a-l)Ra,    (b-l)R b>

I n-1

(b-l)Ra + la.b]

\ ( = 0

I«'   Vl-    (a-l)Rh-\   £ b)Rla

i

la.b)-
\  / = 0

Proof. Simple calculations will show that the given chains are cycles and thus

represent elements of H2(K) = Z2(K).To show that they generate all of H2(K) (a

fact not actually needed in this paper), use a technique similar to Metzler's in [M2,

p. 330].    D

Lemma 1.4. Given a finite 2-dimensional complex K and Z-Uf-module map (f>:

C2(K) —> C2(K) which commutes with the boundary operator in the sense that

d2<p = 32, then there exists a homotopy equivalence f:K^>K such that f2 = 4> and

ff = identity only if the Z-ïïf-module representation of <$> is inverüble.

Proof. This is done by modifying the identity map on K using the Puppe action.

This technique is patterned after [DS, p. 41]. For the original reference, see [P].

Suppose /: K -» K is a homotopy equivalence which induces the identity map on

7r1(A'). Let K be the universal cover of K. Since /*: tt, -» w, is the identity, then /

is homotopic to a map which induces the identity on Cf(K). Since we are only

interested in homotopy classes of maps, we may assume / is that map. Now /

induces the following map on the chain complex of the universe cover K:

0 0

4 I
H2(K) fi       H2(K)

3 I 3|

C2(K) *        C2(K)

(1)                                           31 3J,

Cf(K) A"d     Cf(K)

3 i di

/o = id

C0 (If)        -        C0(K)

1 i
0 0

Consider the map id:K -» K. The induced maps on the chain complex of K will all

be the identity. Replace f2 by <j> in diagram (1). Now we have two chain maps that

agree except on C2(K). That means that <i>-id2 will commute in the following
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLE homotopy type OF FINITE 2-COMPLEXES 657

diagram:

c2(k)    ^d    C2(K)

(2) 3 1 3|

Cf(k)    X    Cf(k)

Consequently, the image of <í>-id will be in H2(K) = tr2(K). Let fibea 2-cell in

K (from the CW-decomposition). Then [<i>-id](Ä) G H2(K) = ir2(K). Let p be the

representative of the image of R in tt2(K). Also let p represent the actual map p:

S2 -» K. Now define g by the composition of the following maps:

h idvp
K^KV S2 -» K,

where h is the identity on K\R and maps R onto R V S2 by mapping some

(S1, e) c (R, e0) to e0 and the interior disk to S2. The rest of R gets "stretched" to

cover R. Now g2(R) = <J>(Ä).

We can modify g using the above technique on the other 2-cells in the decomposi-

tion of K to obtain our hypothesized /. Using the Five Lemma on diagram (1), /

will be a homotopy equivalence if and only if </> is an isomorphism.

That r(f) = [M] comes from direct computation, using Cohen's §15 and (22.8) in

[C].    D
Proof of Theorem 1.1. Given an element 4> g Wh(Ä"), we want to construct a

homotopy equivalence /: K -* K, so that t(/) = </>. By Lemma 1.4 we merely need

to produce an invertible Z7r,-matrix M such that M commutes with the boundary

operator and [M ] = $ g Wh(AT). Since in this case K has three 2-cells, we need

M g GLjÍZtt,).
Let a = a — 1 and b = b — 1. Then by Lemma 1.3, any matrix of the following

form (where the rows represent the images of Ra, Rh, Ä[a_fc]) will commute with the

boundary operator:

1 + 4>ffä + $ffb,       <j>f2ä + 4>f2b, '/'iiLa'- *i2L¿''

¿>2fä + }p21b,        1 + 4>22ä + ^22b,       ^íL0' ~ fyuYjV

<t>3lä + t3lb, <!>nä + ^i2b,        1 + ii*31£a''- <f>32X>'

where <¡>jJ, \p^ are appropriate elements of Z[tTf(K)] = Z[Zn X Zm).

Now any element of Wh( Z(Z„ X Zm)) may be represented by a 2 X 2-matrix, see

Bass [B, p. 183] and Lam [L, p. 143]. Let (J su) be that matrix, where r, s, t,

u g Z(Zn X Zm). Consider the augmentation map Z(ZnX Zm) -* Z which maps

the elements of Z„ X Zm to 1. Call the images of r, s, t and u respectively r',s',t'

and u' g Z. Then we may transform the matrix (',' su,) to ( %x 1) via row and column

operators.

We can choose our representative (' su) without changing the element in

Wh(Z(Z„ X Zm)) in order that^,' su.) transforms to ( + 1 ?).
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Now use the same row and column operations on (' su) that we did on ('/ su). We

get a matrix which maps to (0 °) when a, b -> 1. Using Lemma 1.2, this new matrix

must be of the form

1 + aja + ßfb,    <¡>fO + \pfb

\p2ä + ß2b, 1 + <j)2â~ + ^¡2b
where a,, ft, *lt *,. e Z(Zn X Zm)

Therefore, we may represent any element of Wh(Z(Zn X Zm)) in the form (2). If we

choose the constants correctly for our matrix (1), and manipulate that matrix to get

the form (2), then we will be done. First, letting <|>31 = ^31 = ^>32 = i//32 = 0, we get

1 + 4>ffa + \l>ffb,        <¡>12b + 4>f2(-a),        ^nlla + <t>nJlb'

<t>21â + 4>21b,        1 + 4>22b + yp22(-ä),    4>2iY.a + <i>22Y.t>'

0 0 1

We then use row 3 to clear column 3 to the equivalent matrix

1 + <t>ffa + iPub,     <t>12b + 4>f2(-a)

<t>2lä + t//21<?, 1 + d>22b + <t>22(~a)

which, with appropriate choice of constants, is equal to the matrix (2). Consequently,

we may produce a matrix M which represents any given element of Wh(AT), by

Lemma 1.4, such that M represents f2 for some map /: K -» K, with /, = identity.

M is in vertible since it represents an element of Wh(/T). Therefore, / is a homotopy

equivalence. Since fx is the identity map, then r(f) = M, and therefore all the

elements of Wh( K ) are representable.    □

Corollary 1.5. Let L be a finite 2-dimensional complex with vr¡(L) = Znx Zm

and x(L) = k. Then L is simple homotopy equivalent to K V (k — 2)(S2), where K is

the complex of Theorem 1.1.

Proof. Since the complex K of Theorem 1.1 realizes all of its Whitehead group as

the torsions of self-equivalence on K, then by Cohen [C, Theorem 24.4] any complex

homotopy equivalent to K is simple homotopy equivalent to K. By Dyer [D3],

homotopy type of any finite 2-complex with fundamental group Z„ X Zm is de-

termined by the Euler characteristic. Since our example K has minimal Euler

characteristic (see Swan [Sw, Proposition 2.1]), the other Euler characteristics may be

obtained by wedging K with the appropriate number of copies of S2. If K realizes

all of its torsion by self-equivalences then so does K V S2. For if /: K -* K is a

homotpy equivalence, let / V id: K V S2 ^> K V S2. Then r(f) = r(f V id).

Consequently, given a 2-complex L with ^(L) = ZmX Zn and x(L) = k, then

by Dyer [D3] L is homotopy equivalent to K V (k - 2)S2. But since K V (k - 2)S2

realizes all of its torsion by self-equivalence we know by Cohen [C] that L is simple

homotopy equivalent to K V (k — 2)S2.   D
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Corollary 1.6. Let K, L be finite 2-dimensional CW-complexes with fundamental

groups ZnX Zm. Then the following are equivalent.

(a) x(/0 = X(L),
(b) K is homotopy equivalent to L.

(c) K is simple homotopy equivalent to L.

2. The general abelian case. We want to prove that simple homotopy type and

homotopy type agree for finite 2-complexes with finite abelian fundamental group.

This general situation is unlike the Z„ X Zm case in that homotopy type does not

depend only on Euler characteristic. When the Euler characteristic is minimal,

homotopy type depends also on bias (see Metzler [Ml], Sieradski [S] and Browning

[Br]).

According to Browning [Br, Theorem 1.7] and Sieradski [S, Theorem 2], any finite

2-complex of minimal Euler characteristic with finite abelian fundamental group is

homotopy equivalent to the standard complex of some twisted (or "untwisted")

presentation of the form

{a,|a;\[ai,a2],[a,,a7],i <j,j * 2),

where r < «, and (r,nx) = 1.

So if we are to use our previous techniques for showing that homotopy type and

simple type agree, we not only have to show that the standard complex of the

presentation

[a,\a?;[at,aj\\i <j;j= l,...,N}

realizes all of its Whitehead torsion by self-equivalences, we also have to show that

the standard complex of any twisted presentation realizes all of its torsion by

self-equivalences.

Lemma 2.1. Let G be a finite abelian group, and let P = {a^a"', [a[, a2], (a¡, a ■]; /'

< j; j ¥= 2; i, j = 1,...,N }, where r < n, and (r, rif)= \, be a twisted presentation

of G. Let K(P) = K be the standard complex of P. Then all of the torsion of Wh(K )

is realizable as t(/) for some f e £(K).

Proof. The proof proceeds as that of Theorem 1.1. Let K be the universal cover

of K. Then the following are elements of H2(K):

(a,-i)A,.,  «-i)ä2-(M)ä12,

(*,-!)*,+(IX)*,,,       ij*U,i<j,

(a,-i)^-(Eûf)/?,7,     ij + \i,i<j.

The above restrictions on ij tell us that if we try to use these elements of H2(K)

to modify the first two rows of the identity matrix, the first column will have no

(ax — 1) = äf component. So what we will do is ignore the first row and attempt to

get our result using the second and third rows.
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Consider the map $: C2(K) -» C2(K) which is the identity except:

R2 ~ 1 • R2 + Cf\(a[ - 1)R2 -(£*£)*„] + C12(a2 - 1)A:

+ Eclt[(fli-i)Ä2-(^)Äj
Ä = 3

+ C21[(a1-l)*3-(£a3£)iî13]

+ C22[(«2 - 1)Ä3 -(Zafikn] + C23(a3 - 1)R3

N

+ LC2h{(ah-l)R3+{Zak3)R3h\,

R3^1R3 + C3\(a[ - l)R2-{L4)~Rn] + C32(a2 - 1)R7

+ LC3h[(ah-l)R2-{Zak2)R2h\
A = 3

+ C41[(al-l)R3-(Zal)kl3\

+ C42[(a2 - 1)Ä3 -(£a3*)Ä23] + CA3(a3 - 1)Ä3

+ £c4A[k-i)ä3+(£ö3*)ä3A],
/i = 4

where the C's are arbitrary elements of Z[7TfK].

If the matrix M representing <$> is invertible, d> will (by Lemma 1.4) represent the

induced map on C2(K) of a homotopy equivalence which induces the identity on

Cf(K), since 82 ° M = 92.

M will have the following form:

R,

R-

R.

R,

Rf     R2 R3 • • • , Rtj

1,0, 0, 0
N N

o,    i + cnâ[ + £ clhäh,    Lc2hâh,       o,...,o,   <¡>,.,2
h=2 h=l

N N

0,     C3lä[ + £ c2häh, l+£c2AâA,    0,...,0,    <b¡h
h=2 h=2

'<5>
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where (¡>¡J (g = 1,2) is the appropriate row vector, i.e.,

♦u, = Qid«*),

♦«.--CalE«*].

*3*. = Ç,*(5>3*).       4<A<iV,

*i22 = -c31(Lflî)»

*2*2=-C3A(£af),        4</i<A',

*i32 =-Q(E«*).

*3*-Ci»(L«*) and

ó,-,- = 0    otherwise.

As before, this matrix is Whitehead equivalent to

1 + Cff(a[-1)+ £C1AK-1),
A = 2

/V

c3l(«i-i)+ £c3A(aA-i),
h = 2

£ C2A(a - 1)

i + £ Q*K - i)

To show that all elements of Wh(Z(G)) can be represented in the above fashion,

we invoke Lemma 1.2 using {a[, a2,..., aN} as the generators of G.    D

Since we only need to consider the above twisted presentations, from Sieradski's

Theorem 2 in [2, Lemma 2.1], they give us the following two theorems.

Theorem 2.2. Let K be a finite 2-dimensional CW-complex with finite abelian

fundamental group. Then all of the elements of Wh(AT) are realizable as the torsions of

self-equivalences on K.

Theorem 2.3. Homotopy equivalence and simple homotopy equivalence are the same

for finite 2-dimensional CW-complexes with finite abelian fundamental group.
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