SIMPLE HOMOTOPY TYPE OF FINITE 2-COMPLEXES WITH FINITE ABELIAN FUNDAMENTAL GROUP

BY

M. PAUL LATIOLAIS

ABSTRACT.

THEOREM 1. Let K be a finite 2-dimensional CW-complex with $\pi_1(K)$ finite and abelian. Then every element of the Whitehead group of K is realizable as the torsion of a self-homotopy equivalence on K.

THEOREM 2. Homotopy equivalence and simple homotopy equivalence are the same for finite 2-dimensional CW-complexes with finite abelian fundamental groups.

0. Introduction. It is known that there exist finite *n*-complexes for all n > 2 which are homotopy equivalent but not simply homotopy equivalent. In this paper, we show that in dimension 2 homotopy type and simple homotopy type are the same when the fundamental group of the finite 2-dimensional complexes is finite and abelian.

The technique used is to show that all the elements of the Whitehead group of a complex K are realizable as torsions of self-equivalences on K.

1. An important example. Dyer and Sieradski [DS] showed in 1973 that two 2-dimensional CW-complexes whose fundamental group was Z_n were homotopy equivalent if and only if they were simple homotopy equivalent. The next case to consider would be $Z_n \times Z_m$. We want to show that any 2-dimensional complex with fundamental group $Z_n \times Z_m$ realizes all of its Whitehead group as torsions of self-equivalences. ($\xi(K)$ denotes the group of self-homotopy equivalences of K.)

THEOREM 1.1. Let K be the standard 2-complex of the presentation $P = \{a, b | a^n, b^m, [a, b]\}$. Then every element of Wh(K) is realizable as $\tau(f)$ for some $f \in \xi(K)$.

To prove the above theorem, we need the following three lemmas.

LEMMA 1.2. Suppose G is a group with generating set $\{a_i | i \in I\}$ for some index set I. Let A: $Z(G) \rightarrow Z$ be the augmentation map (i.e., the ring homomorphism taking g to 1 for each $g \in G$). Then each element $\theta \in \ker A$ is of the form

$$\theta = \sum_{i} \phi_i(a_i - 1)$$
 for some elements $\phi_i \in Z(G)$

PROOF. See [F, p. 549].

1980 Mathematics Subject Classification. Primary 57M20, 57Q10.

©1986 American Mathematical Society 0002-9947/86 \$1.00 + \$.25 per page

Received by the editors June 1, 1984 and, in revised form, February 18, 1985. Presented to the Society in Louisville, Kentucky, on January 28, 1984.

LEMMA 1.3. Let K be the standard complex of the presentation $\{a, b | a^n, b^m, aba^{-1}b^{-1}\}$ and let \tilde{K} be the universal cover of K with a chosen lift \tilde{e}_0 of the single 0-cell in K. Consider $C_i(\tilde{K})$ as a $Z\pi_1$ -module generated by the preferred lifts of reach i-cell. Then $H_2(\tilde{K})$ is generated by the set

$$(a-1)\tilde{R}_{a}, \quad (b-1)\tilde{R}_{b},$$
$$(b-1)\tilde{R}_{a} + \left(\sum_{i=0}^{n-1} a^{i}\right)\tilde{R}_{[a,b]}, \quad (a-1)\tilde{R}_{b} - \left(\sum_{i=0}^{m-1} b\right)\tilde{R}_{[a,b]}$$

PROOF. Simple calculations will show that the given chains are cycles and thus represent elements of $H_2(\tilde{K}) = Z_2(\tilde{K})$. To show that they generate all of $H_2(\tilde{K})$ (a fact not actually needed in this paper), use a technique similar to Metzler's in [M2, p. 330]. \Box

LEMMA 1.4. Given a finite 2-dimensional complex K and $Z\pi_1$ -module map ϕ : $C_2(\tilde{K}) \rightarrow C_2(\tilde{K})$ which commutes with the boundary operator in the sense that $\partial_2 \phi = \partial_2$, then there exists a homotopy equivalence f: $K \rightarrow K$ such that $\tilde{f}_2 = \phi$ and $\tilde{f}_1 = identity$ only if the $Z\pi_1$ -module representation of ϕ is invertible.

PROOF. This is done by modifying the identity map on K using the Puppe action. This technique is patterned after [**DS**, p. 41]. For the original reference, see [**P**].

Suppose $f: K \to K$ is a homotopy equivalence which induces the identity map on $\pi_1(K)$. Let \tilde{K} be the universal cover of K. Since $f_*: \pi_1 \to \pi_1$ is the identity, then f is homotopic to a map which induces the identity on $C_1(\tilde{K})$. Since we are only interested in homotopy classes of maps, we may assume f is that map. Now f induces the following map on the chain complex of the universe cover \tilde{K} :

	0		0
	\downarrow		\downarrow
	$H_2(\tilde{K})$	$f_2^* \rightarrow$	$H_2(\tilde{K})$
	9 ↑		9 †
	$C_2(\tilde{K})$	$\stackrel{\tilde{f}_2}{\rightarrow}$	$C_2(\tilde{K})$
(1)	9 ↓		9↑
	$C_1(\tilde{K})$	$\tilde{f}_1 = \mathrm{id}$ \rightarrow	$C_1(\tilde{K})$
	9↑		9 ↑
	$C_0(\tilde{K})$	$\tilde{f}_0 = \mathrm{id}$ \rightarrow	$C_0(\tilde{K})$
	\downarrow		\downarrow
	0		0

Consider the map id: $K \to K$. The induced maps on the chain complex of \tilde{K} will all be the identity. Replace \tilde{f}_2 by ϕ in diagram (1). Now we have two chain maps that agree except on $C_2(\tilde{K})$. That means that ϕ -id₂ will commute in the following

diagram:

(2)

$$C_{2}(\tilde{K}) \xrightarrow{\varphi \cdot \mathrm{Id}} C_{2}(\tilde{K})$$

$$\partial \downarrow \qquad \partial \downarrow$$

$$C_{1}(\tilde{K}) \xrightarrow{0} C_{1}(\tilde{K})$$

Consequently, the image of ϕ -id will be in $H_2(\tilde{K}) \equiv \pi_2(K)$. Let R be a 2-cell in K (from the CW-decomposition). Then $[\phi\text{-id}](\tilde{R}) \in H_2(\tilde{K}) \equiv \pi_2(K)$. Let p be the representative of the image of \tilde{R} in $\pi_2(K)$. Also let p represent the actual map $p: S^2 \to K$. Now define g by the composition of the following maps:

$$K \xrightarrow{h} K \vee S^2 \xrightarrow{\mathrm{id} \vee p} K,$$

where h is the identity on $K \setminus R$ and maps R onto $R \vee S^2$ by mapping some $(S^1, e) \subset (R, e_0)$ to e_0 and the interior disk to S^2 . The rest of R gets "stretched" to cover R. Now $\tilde{g}_2(\tilde{R}) = \phi(\tilde{R})$.

We can modify g using the above technique on the other 2-cells in the decomposition of K to obtain our hypothesized f. Using the Five Lemma on diagram (1), f will be a homotopy equivalence if and only if ϕ is an isomorphism.

That $\tau(f) = [M]$ comes from direct computation, using Cohen's §15 and (22.8) in [C]. \Box

PROOF OF THEOREM 1.1. Given an element $\phi \in Wh(K)$, we want to construct a homotopy equivalence $f: K \to K$, so that $\tau(f) = \phi$. By Lemma 1.4 we merely need to produce an invertible $Z\pi_1$ -matrix M such that M commutes with the boundary operator and $[M] = \phi \in Wh(K)$. Since in this case K has three 2-cells, we need $M \in GL_3(Z\pi_1)$.

Let $\bar{a} = a - 1$ and $\bar{b} = b - 1$. Then by Lemma 1.3, any matrix of the following form (where the *rows* represent the images of \tilde{R}_a , \tilde{R}_b , $\tilde{R}_{[a,b]}$) will commute with the boundary operator:

$$\begin{bmatrix} 1 + \phi_{11}\bar{a} + \psi_{11}\bar{b}, & \phi_{12}\bar{a} + \psi_{12}\bar{b}, & \psi_{11}\sum a^{i} - \phi_{12}\sum b^{i} \\ \phi_{21}\bar{a} + \psi_{21}\bar{b}, & 1 + \phi_{22}\bar{a} + \psi_{22}\bar{b}, & \psi_{21}\sum a^{i} - \phi_{12}\sum b^{i} \\ \phi_{31}\bar{a} + \psi_{31}\bar{b}, & \phi_{32}\bar{a} + \psi_{32}\bar{b}, & 1 + \psi_{31}\sum a^{i} - \phi_{32}\sum b^{i} \end{bmatrix}$$

where ϕ_{ij} , ψ_{ij} are appropriate elements of $Z[\pi_1(K)] = Z[Z_n \times Z_m]$.

Now any element of Wh $(Z(Z_n \times Z_m))$ may be represented by a 2×2 -matrix, see Bass [**B**, p. 183] and Lam [L, p. 143]. Let $\binom{r}{t}{u}$ be that matrix, where r, s, t, $u \in Z(Z_n \times Z_m)$. Consider the augmentation map $Z(Z_n \times Z_m) \to Z$ which maps the elements of $Z_n \times Z_m$ to 1. Call the images of r, s, t and u respectively r', s', t'and $u' \in Z$. Then we may transform the matrix $\binom{r'}{t}{u'}$ to $\binom{\pm 1}{0}$ via row and column operators.

We can choose our representative $\binom{r}{t}{u}$ without changing the element in Wh $(Z(Z_n \times Z_m))$ in order that $\binom{r'}{t}{u'}$ transforms to $\binom{+1}{0}{1}$.

Now use the same row and column operations on $\begin{pmatrix} r & s \\ t & u \end{pmatrix}$ that we did on $\begin{pmatrix} t' & s' \\ t' & u' \end{pmatrix}$. We get a matrix which maps to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ when $a, b \rightarrow 1$. Using Lemma 1.2, this new matrix must be of the form

$$\begin{bmatrix} 1 + \alpha_1 \bar{a} + \beta_1 \bar{b}, & \phi_1 \bar{a} + \psi_1 \bar{b} \\ \psi_2 \bar{a} + \beta_2 \bar{b}, & 1 + \phi_2 \bar{a} + \psi_2 \bar{b} \end{bmatrix} \text{ where } \alpha_i, \beta_1, \phi_1, \psi_i \in Z(Z_n \times Z_m)$$

Therefore, we may represent any element of Wh $(Z(Z_n \times Z_m))$ in the form (2). If we choose the constants correctly for our matrix (1), and manipulate that matrix to get the form (2), then we will be done. First, letting $\phi_{31} = \psi_{31} = \phi_{32} = \psi_{32} = 0$, we get

$$\begin{array}{cccc} 1 + \phi_{11}\bar{a} + \psi_{11}\bar{b}, & \phi_{12}\bar{b} + \psi_{12}(-\bar{a}), & \psi_{11}\sum a + \phi_{12}\sum b^{i} \\ \phi_{21}\bar{a} + \psi_{21}\bar{b}, & 1 + \phi_{22}\bar{b} + \psi_{22}(-\bar{a}), & \psi_{21}\sum a + \phi_{22}\sum b^{i} \\ 0 & 0 & 1 \end{array} \right]$$

We then use row 3 to clear column 3 to the equivalent matrix

$$\begin{bmatrix} 1 + \phi_{11}\bar{a} + \psi_{11}\bar{b}, & \phi_{12}\bar{b} + \psi_{12}(-\bar{a}) \\ \phi_{21}\bar{a} + \psi_{21}\bar{b}, & 1 + \phi_{22}\bar{b} + \phi_{22}(-\bar{a}) \end{bmatrix}$$

which, with appropriate choice of constants, is equal to the matrix (2). Consequently, we may produce a matrix M which represents any given element of Wh(K), by Lemma 1.4, such that M represents \tilde{f}_2 for some map $f: K \to K$, with \tilde{f}_1 = identity. M is invertible since it represents an element of Wh(K). Therefore, f is a homotopy equivalence. Since \tilde{f}_1 is the identity map, then $\tau(f) = M$, and therefore all the elements of Wh(K) are representable. \Box

COROLLARY 1.5. Let L be a finite 2-dimensional complex with $\pi_1(L) = Z_n \times Z_m$ and $\chi(L) = k$. Then L is simple homotopy equivalent to $K \vee (k-2)(S^2)$, where K is the complex of Theorem 1.1.

PROOF. Since the complex K of Theorem 1.1 realizes all of its Whitehead group as the torsions of self-equivalence on K, then by Cohen [C, Theorem 24.4] any complex homotopy equivalent to K is simple homotopy equivalent to K. By Dyer [D3], homotopy type of any finite 2-complex with fundamental group $Z_n \times Z_m$ is determined by the Euler characteristic. Since our example K has minimal Euler characteristic (see Swan [Sw, Proposition 2.1]), the other Euler characteristics may be obtained by wedging K with the appropriate number of copies of S^2 . If K realizes all of its torsion by self-equivalences then so does $K \vee S^2$. For if $f: K \to K$ is a homotpy equivalence, let $f \vee id: K \vee S^2 \to K \vee S^2$. Then $\tau(f) = \tau(f \vee id)$.

Consequently, given a 2-complex L with $\pi_1(L) = Z_m \times Z_n$ and $\chi(L) = k$, then by Dyer [D3] L is homotopy equivalent to $K \vee (k-2)S^2$. But since $K \vee (k-2)S^2$ realizes all of its torsion by self-equivalence we know by Cohen [C] that L is simple homotopy equivalent to $K \vee (k-2)S^2$. \Box COROLLARY 1.6. Let K, L be finite 2-dimensional CW-complexes with fundamental groups $Z_n \times Z_m$. Then the following are equivalent.

- (a) $\chi(K) = \chi(L)$,
- (b) K is homotopy equivalent to L.

(c) K is simple homotopy equivalent to L.

2. The general abelian case. We want to prove that simple homotopy type and homotopy type agree for finite 2-complexes with finite abelian fundamental group. This general situation is unlike the $Z_n \times Z_m$ case in that homotopy type does not depend only on Euler characteristic. When the Euler characteristic is minimal, homotopy type depends also on bias (see Metzler [M1], Sieradski [S] and Browning [Br]).

According to Browning [**Br**, Theorem 1.7] and Sieradski [**S**, Theorem 2], any finite 2-complex of minimal Euler characteristic with finite abelian fundamental group is homotopy equivalent to the standard complex of some twisted (or "untwisted") presentation of the form

$$\{a_i | a_i^{n_i}, [a_1^r, a_2], [a_i, a_j], i < j, j \neq 2\},\$$

where $r < n_1$ and $(r, n_1) = 1$.

So if we are to use our previous techniques for showing that homotopy type and simple type agree, we not only have to show that the standard complex of the presentation

$$\{a_i | a_i^{n_i}; [a_i, a_i]; i < j; j = 1, \dots, N\}$$

realizes all of its Whitehead torsion by self-equivalences, we also have to show that the standard complex of any twisted presentation realizes all of its torsion by self-equivalences.

LEMMA 2.1. Let G be a finite abelian group, and let $P = \{a_i | a_i^{n_i}, [a_1^r, a_2], [a_i, a_j]; i < j; j \neq 2; i, j = 1, ..., N\}$, where $r < n_1$ and $(r, n_1) = 1$, be a twisted presentation of G. Let K(P) = K be the standard complex of P. Then all of the torsion of Wh(K) is realizable as $\tau(f)$ for some $f \in \xi(K)$.

PROOF. The proof proceeds as that of Theorem 1.1. Let \tilde{K} be the universal cover of K. Then the following are elements of $H_2(\tilde{K})$:

$$\begin{array}{ll} (a_{i}-1)\tilde{R}_{i}, & (a_{1}^{r}-1)\tilde{R}_{2}-\left(\sum a_{2}^{k}\right)\tilde{R}_{12}, \\ (a_{j}-1)\tilde{R}_{i}+\left(\sum a_{i}^{k}\right)\tilde{R}_{ij}, & ij\neq 12, \, i< j, \\ (a_{i}-1)\tilde{R}_{j}-\left(\sum a_{j}^{k}\right)\tilde{R}_{ij}, & ij\neq 12, \, i< j. \end{array}$$

The above restrictions on *ij* tell us that if we try to use these elements of $H_2(K)$ to modify the first two rows of the identity matrix, the first column will have no $(a_1 - 1) = \bar{a}_1$ component. So what we will do is ignore the first row and attempt to get our result using the second and third rows.

Consider the map $\phi: C_2(\tilde{K}) \to C_2(\tilde{K})$ which is the identity except:

$$\begin{split} \tilde{R}_{2} &\mapsto 1 \cdot \tilde{R}_{2} + C_{11} \Big[(a_{1}^{r} - 1) \tilde{R}_{2} - \left(\sum a_{2}^{k} \right) \tilde{R}_{12} \Big] + C_{12} (a_{2} - 1) \tilde{R}_{2} \\ &+ \sum_{h=3}^{N} C_{1h} \Big[(a_{h} - 1) \tilde{R}_{2} - \left(\sum a_{2}^{k} \right) \tilde{R}_{2h} \Big] \\ &+ C_{21} \Big[(a_{1} - 1) \tilde{R}_{3} - \left(\sum a_{3}^{k} \right) \tilde{R}_{13} \Big] \\ &+ C_{22} \Big[(a_{2} - 1) \tilde{R}_{3} - \left(\sum a_{3}^{k} \right) \tilde{R}_{23} \Big] + C_{23} (a_{3} - 1) \tilde{R}_{3} \\ &+ \sum_{h=4}^{N} C_{2h} \Big[(a_{h} - 1) \tilde{R}_{3} + \left(\sum a_{3}^{k} \right) \tilde{R}_{3h} \Big], \\ \tilde{R}_{3} &\mapsto 1 \cdot \tilde{R}_{3} + C_{31} \Big[(a_{1}^{r} - 1) \tilde{R}_{2} - \left(\sum a_{2}^{k} \right) \tilde{R}_{12} \Big] + C_{32} (a_{2} - 1) \tilde{R}_{2} \\ &+ \sum_{h=3}^{N} C_{3h} \Big[(a_{h} - 1) \tilde{R}_{2} - \left(\sum a_{2}^{k} \right) \tilde{R}_{2h} \Big] \\ &+ C_{41} \Big[(a_{1} - 1) \tilde{R}_{3} - \left(\sum a_{3}^{k} \right) \tilde{R}_{13} \Big] \\ &+ C_{42} \Big[(a_{2} - 1) \tilde{R}_{3} - \left(\sum a_{3}^{k} \right) \tilde{R}_{23} \Big] + C_{43} (a_{3} - 1) \tilde{R}_{3} \\ &+ \sum_{h=4}^{N} C_{4h} \Big[(a_{h} - 1) \tilde{R}_{3} + \left(\sum a_{3}^{k} \right) \tilde{R}_{3h} \Big], \end{split}$$

where the C's are arbitrary elements of $Z[\pi_1 K]$.

If the matrix M representing ϕ is invertible, ϕ will (by Lemma 1.4) represent the induced map on $C_2(\tilde{K})$ of a homotopy equivalence which induces the identity on $C_1(\tilde{K})$, since $\partial_2 \circ M = \partial_2$.

M will have the following form:

where ϕ_{ij_a} (g = 1, 2) is the appropriate row vector, i.e.,

$$\begin{split} \phi_{12_1} &= C_{11} \left(\sum a_2^k \right), \\ \phi_{2h_1} &= -C_{1h} \left(\sum a_3^k \right), \qquad 4 \leq h \leq N, \\ \phi_{13_1} &= -C_{21} \left[\sum a_3^k \right], \\ \phi_{23_1} &= -C_{22} \left(\sum a_3^k \right) - C_{13} \left(\sum a_2^k \right), \\ \phi_{3h_1} &= C_{2h} \left(\sum a_3^k \right), \qquad 4 \leq h \leq N, \\ \phi_{12_2} &= -C_{31} \left(\sum a_2^k \right), \\ \phi_{2h_2} &= -C_{3h} \left(\sum a_2^k \right), \qquad 4 \leq h \leq N, \\ \phi_{13_2} &= -C_{41} \left(\sum a_3^k \right), \\ \phi_{3h} &= C_{4h} \left(\sum a_3^k \right) \text{ and } \\ \phi_{23_2} &= -C_{42} \left(\sum a_2^k \right) - C_{33} \left(\sum a_2^k \right), \\ \phi_{ij_g} &= 0 \quad \text{otherwise.} \end{split}$$

As before, this matrix is Whitehead equivalent to

$$\begin{bmatrix} 1 + C_{11}(a_1^r - 1) + \sum_{h=2}^{N} C_{1h}(a_h - 1), & \sum_{h=1}^{N} C_{2h}(a - 1) \\ C_{31}(a_1^r - 1) + \sum_{h=2}^{N} C_{3h}(a_h - 1), & 1 + \sum_{h=1}^{N} C_{4h}(a_h - 1) \end{bmatrix}$$

To show that all elements of Wh(Z(G)) can be represented in the above fashion, we invoke Lemma 1.2 using $\{a_1^r, a_2, \ldots, a_N\}$ as the generators of G. \Box

Since we only need to consider the above twisted presentations, from Sieradski's Theorem 2 in [2, Lemma 2.1], they give us the following two theorems.

THEOREM 2.2. Let K be a finite 2-dimensional CW-complex with finite abelian fundamental group. Then all of the elements of Wh(K) are realizable as the torsions of self-equivalences on K.

THEOREM 2.3. Homotopy equivalence and simple homotopy equivalence are the same for finite 2-dimensional CW-complexes with finite abelian fundamental group.

References

[B] H. Bass, Algebraic K-theory, Benjamin, New York, 1968.

[Br] W. Browning, *Finite CW-complexes of cohomological dimension* 2 with finite abelian π_1 (unpublished), Forschungsinstitut fur Mathematik, E.T. H., CH-8092, Zurich, Switzerland.

[C] M. Cohen, A course in simple-homotopy theory, Springer-Verlag, 1970.

[D2] M. Dyer, Simple homotopy types for (G - m)-complexes, Proc. Amer. Math. Soc. 81 (1981), 111-115.

[D3] _____, An application of homological algebra to the homotopy classification of two-dimensional CW-complexes, Trans. Amer. Math. Soc. 259 (1980), 505–514.

[DS] M. Dyer and A. Sieradski, Trees of homotopy types of two-dimensional CW-complexes, Comment. Math. Helv. 48 (1973), 31-44. [F] R. Fox, Free differential calculus. I, Ann. of Math. (2) 57 (1953), 547-559.

[L] T.-Y. Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. Ecole. Norm. Sup. 1 (1968), 91–148.

[M1] W. Metzler, Über den Homotopietyp zweidimensionaler CW-Komplexe und Elementarttransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, J. Reine Angew. Math. 285 (1976), 7-23.

[M2] _____, Two-dimensional complexes with torsion values not realizable by self-equivalences, Homological Group Theory, London Math. Soc. Lecture Notes Series 36, Cambridge Univ. Press, 1977, pp. 327–337.

[P] D. Puppe, Homotopiemengen und Ihre Induzieten Abbildungen. I, Math. Z. 69 (1958), 299-344.

[S] A. Sieradski, A semigroup of simple homotopy types, Math. Z. 153 (1977), 134-148.

[Sw] R. Swan, Minimal resolutions for finite groups, Topology 4 (1965), 193-208.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118

Current address: Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire 03755