
transactions of the
american mathematical society
Volume 293. Number 2. February 1986

ALMOST MIZOHATA OPERATORS1

BY

NICHOLAS HANGES

Abstract. The range of every almost Mizohata operator is characterized via an

integral formula.

Introduction. Let (x, t) be coordinates in R2. One of the simplest examples of a

nonsolvable operator is the Mizohata operator

(0.1) M = 3/3/ + 2/í3/3x.

In fact if / is a smooth function defined near the origin, there exists a distribution u

such that

(0.2) Mu = /    near the origin

if and only if Nf is analytic near zero. N is defined by

(0.3) (Nf)(x)=r   f   r e+*-r+"2^f(y,s)dyds.
•Loo -Loo Jo ¿7r

Recall that a similar result [4] holds for the celebrated Hans Lewy operator, where

the role of N is played by the Szegö operator.

A famous result of Nirenberg [6] shows that one may perturb M so that the

resulting operator has only the constant functions as solutions to the homogeneous

equation. Later Trêves [8, 10] and Sjöstrand [7] studied the class of almost Mizohata

operators (defined in §1 here). This class includes the Nirenberg example mentioned

above. These authors obtained results on the homogeneous equation.

Our goal here is to characterize the range of all almost Mizohata operators via a

formula analogous to (0.3). This is Theorem 3.1, stated at the end of the paper. In

order to make this article self-contained we have included results of Trêves [8] and

Sjöstrand [7].

In §1 the main result is Proposition 1.3 which gives a normal form for any almost

Mizohata operator. In §2 we characterize all solutions to the homogeneous equation.

Although the results in these two sections have appeared in [7, 8, 10], we believe this

approach is necessary to understand Theorem 3.1.
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664 NICHOLAS HANGES

Those familiar with hypoanalytic structures [2, 5] will observe that each almost

Mizohata operator induces on the real line two natural hypoanalytic structures.

Most results obtained here could have been stated in terms of the two corresponding

hypoanalytic wave front sets. To keep the paper self-contained, we have avoided

explicit mention of hypoanalyticity.

At this point we would like to thank François Trêves for sharing the manuscript

[10] with us.

1. Almost Mizohata operators and the normal form. Let L be a smooth complex

valued vector field defined near a point p e R2. Let L be its complex conjugate and

[L, L] the commutator. We say that L is an almost Mizohata operator near p if:

(1.1) L ( /? ) and L ( p ) are linearly dependen t,

(1.2) L(p) and [L, L](p) are linearly independent.

Our objective in this section is to obtain a normal form for such operators. This is

described in Proposition 1.3. We begin with some preliminary remarks.

After a smooth change of coordinates rectifying the real (or imaginary) part of L

and division by a nonvanishing smooth factor we may assume that there exist local

coordinates (x, t) defined near the origin in R2 such that L takes the form

(1.3) L = A + /A(*,0¿,

where À is smooth and real valued. Since (1.1) and (1.2) are invariant conditions we

have

(1.1)' A(0,0) = 0,

(1.2)' ^(0,0) #0.

We will make one more preliminary observation. Let u(x, t) be a smooth real

function defined near the origin satisfying there the following:

(1.4) X,u, + \2Xxux.= 0,        «x(0,0)#0,    «(0,0) = 0.

Now if we let x = u(x,t) and t = X(x,t), it is a straightforward computation to

check that the correspondence (x, t) •-» (x,t) is a smooth change of coordinates

from a neighborhood of the origin into itself. Furthermore in these coordinates L is

transformed into

(1.5) ^ L = jî + 2itl(x,ï)±

where X is smooth, real and X(0,0) + 0.

Throughout this article a function will be called flat at {t = 0} if it and all its

derivatives vanish on the line {t = 0}.

Lemma 1.1. Let L be an almost Mizohata operator near p e£ Then there exists a

smooth diffeomorphism mapping a neighborhood of p to a neighborhood of the origin so

that in the new coordinates (x,t) we have

(1.6) L = ~ + 2it(l + p(x,t))^,

where p is smooth, real valued and flat at [t = 0}.
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ALMOST MIZOHATA OPERATORS 665

(1.8)

Proof. Our preliminary remarks allow us to assume that L is defined near the

origin and has the form

(1.7) L = ¡t + 2ltX(x,t)¡-x

with X real, smooth and X(0,0) > 0. We begin by formally solving the initial value

problem

Lv = 0

|,=o = x-

The formal Taylor series of X determines the formal Taylor series for v:

v(x,t) - x + Uf(x)t + u2(x)t2 +

Now define

00 /    (

u(x,t) = X + Uf(x)t + u2(x)t2 +  £  Uj(x)tJx\ —
7 = 3 \£.i

where x e C°°(R), x(0 = 1 for |i| ^ 1, x(0 = 0 for \t\ > 2 and where the e, -» 0

are determined so that the series converges in C°°.

Note that Lu is flat at {t = 0}. This implies that «, = 0 and u2(x) = -iX(x,0).

Hence (Reu)(x, t) = x + Q(t3) and (Im«)(jt,i)= -iX(x,0)t2 + 0(r3). Now de-

fine jc = Re w, i = t]j-Im u/t2. This is clearly a smooth change of coordinates from

a neighborhood of the origin to itself. L now becomes

(1.9) L = ^ + 2it(l + p(x,t))^,

where p is smooth, flat at [t = 0} but not necessarily real valued. To complete the

proof we observe that there is a standard change of coordinates rectifying the real

part of L which also takes L into the desired form (1.6). The proof is complete.

From now on, if U is a neighborhood of the origin we denote by U~ the set

U~= {(jc,/)e U: t <0)

and by U~ its closure. A similar definition holds for U+.

Lemma 1.2. Let L be defined near the origin having the form (1.6). Then there exists

a neighborhood of the origin U and Z G C°°(U~) such that LZ = 0 in U~, dZ/dx # 0

in U~, ImZ^O in U  and Z|,_0 is real valued.

Proof. Define Y = -t2 and X = x. Then the map (x, t) -> ( X, Y) is a smooth

change of coordinates from U~ into the lower half of the complex plane. In the new

coordinates we have

(1.10) L = 2{^YE,

where E is defined by

(1-11) E = ^-i(l + p(X,-fY))^
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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for y < 0. Note that E is elliptic for Y < 0 small and p(X, - y-T) is smooth up to

{ Y = 0} and flat there. Next define p by

(1-12) ^yHpu,-vcy), y<0;
and define £ by

(1.13) Ë = ^-i(l + p(X,Y))^.

Observe that É is elliptic in a neighborhood of the origin and has smooth

coefficients. Hence, it is known (see for example [3]) that there exists a smooth

function W(X, Y) defined near the origin such that ËW = 0 near the origin and

(dW/dX)(0,0) * 0. Letting W(x,t) = W(x,-t2) for t < 0 we see that there is a

neighborhood of the origin V such that

(1.14) LW=0   inF~

with W g C°°(V-) and dW/dX # 0 in V~.

Now let W = a + ib where a, b are real. We may assume that da/dx > 0 and

W(0,0) = 0. Define b0(x) = b(x,0), a0(x) = a(x,0) and aö\x) to be the local

inverse of a0. Next define F(x) = b^a^ix)). It follows directly from (1.4) and the

fact that a'a fax # 0 that (perhaps after shrinking V) we have

(1.15) F(a(x,t))>b(x,t),       (x,t)(=V~.

Hence we see that

(1.16) W: V--» { X+ iTeC|y< F(X)} = 0.

If F is small enough, 0 will be simply connected. Hence by the Riemann mapping

theorem we can find H holomorphic in the interior of (9 and smooth up to

{y = F( X)} mapping the interior of 0 conformally into the lower half disk

(1.17) {u + iv g C\u2 + v2 < 1, v < 0).

H also can be chosen to map the curve Y = F(X) to the real axis. Now if we define

(1.18) Z(x,t) = H(W(x,t)),

we see that Z has all the desired properties.    Q.E.D.

We are now ready to state the main result of this section:

Proposition 1.3. Let L be an almost Mizohata operator near p G R2. Then there

exists a smooth diffeomorphism mapping a neighborhood of p to a neighborhood of the

origin U, so that in the new coordinates (x,t) we have

(1.19) L-¿ + 2if(l + p(x,/))¿,

where p is smooth, real valued and p(x, t) = 0 for (x, t) G U~.

Proof. We may assume that there exists a neighborhood of the origin U so that L

has the form (1.6) and that there exists a function Z: U~-* C as described in

Lemma 1.2. Let Z = a + ib with a, b real. Assume da/dx # 0, Z(0,0) = 0. Since
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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LZ = 0 in U   and b(x, 0) = 0 we see that

(1.20) b(x,t) = -t2v(x,t),       (x,t)(=U-

where v(x, t) > 0, (x, t) g U~. Now define

(1.21)

x =

tjv(x,-t) ,        t > 0,

t]jv(x,t) ,       t < 0,

a(x,-f), f > 0,

a(x,i),      r<0.

The map (x, t) ►-» (x, i) is smooth. Indeed, LZ = 0 in t/~ implies that

32>+1Z
(1.22) __(x,o) = 0,        ; = 0,1,2,....

Furthermore, it is easy to check that the above map is a change of coordinates. Now

a straightforward calculation shows that L has the required form in the (x, t)

coordinates, modulo a smooth nonvanishing factor.

Remark 1.4. Suppose that L has the form (1.6) near the origin. Suppose further

that there exists a smooth u such thai Lu = 0 and au/dx + 0 near the origin. Then

an argument similar to that just given shows that there is a smooth coordinate

change taking L into a nonvanishing multiple of the Mizohata operator 3/3r +

2//3/3.X.

2. The homogeneous equation. Let L be an almost Mizohata operator near

p G R2. Our aim in this section is to study the local structure of distributions u such

that

(2.1) Lu = 0.

Note that our approach is greatly inspired by [1]. Throughout this section we will

assume that L is defined in a neighborhood U of the origin and that L has the form

(1.19).
We begin by observing that there exists a smooth function Z g C0O(í/+) such that

Z(0,0) =0, LZ = 0 in U+, dZ/dX * 0 in U+, lmZ < 0 in U+, and Z|,_0 is real

valued. The existence of such a Z follows from arguments similar to those in the

proof of Lemma 1.2. Note that the function x — it2 in U~ is the analog of Z.

Distributions u satisfying (2.1) will then be described in terms of Z and x - it2. We

pause now to recall a definition.

A function H is said to be holomorphic of slow growth in the lower half plane if

and only if there exists U, a neighborhood of the origin in the complex plane, such

that H is holomorphic in U~ and there exists C > 0 and an integer N ^ 0 such that

(2.2) \H(x + iy)\< C/\y\N,       x + iy g U~.

Note that it is a simple exercise to show that H is holomorphic of slow growth in

the lower half plane if and only if there exists a neighborhood U of the origin in the

complex plane and J holomorphic in U~, continuous up to the real axis and an

integer k > 0 such that

(2.3) H = dkJ/dZk    in U .
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Theorem 2.1. Let L be defined in a neighborhood of the origin having the form

(1.19) and let Z be as defined above. Assume that there exists a distribution defined

near the origin such that Lu = 0 there. Then there exists a neighborhood of the origin

U and two functions H and J, holomorphic of slow growth in the lower half plane such

that

(2.4) u(x,t)
H(Z(x,t)),        (x,t)&W

J(x - it2), (x,t) G U~

Remark 2.2. Since the lines [t = constant} are noncharacteristic for L, we may

view u as a smooth function in t with values in the distributions in x. In particular

the trace u0(x) = u(x,0) is a distribution in one variable, well defined near the

origin. Theorem 2.1 then implies that

(2.5) lim  H(Z(x,t)) = u0(x)=  lim J(x - it2),
r-0+ t->0~

where the limits are taken in the distribution sense. Furthermore, it is easy to see

that condition (2.5) is sufficient to locally solve the Cauchy problem

(2.6) Lu = 0,       u(x,0) = u0(x).

Note that condition (2.5) may be very strong. Indeed for the Nirenberg example

mentioned in the introduction, the only w0 satisfying (2.5) are the constant func-

tions.

Proof of Theorem 2.1. Let w be a distribution defined near the origin such that

Lu = 0. The preceding remarks allow us to define the distribution

u(x,t), t > 0,

u(x,-t),        t < 0.
(2.7) ü(x,t) =

Also define

(2.8) Z(x,t) =
Z(x,t), t>0,

Z(x,-t),        t < 0.

Note that Z is smooth since (32A: + 1Z/3i2* + 1)(x,0) = 0 for k = 0,1,2,.... Also

define

\ 2/7(1 + p(x,-t)),        t < 0,

which is smooth since p is flat as [t = 0}. Now define

(2.10) L = ¡-t + X(x,t)lx

and observe that

(2.11) LZ = 0 = Lü.

Define L0 = (l/Zx)d/dx. Note that we have

(2.12) [¿0,L] = 0.
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Since ü is locally of finite order there exists an integer N and a continuous function

v defined near the origin such that

(2.13) L$v = Ü.

It follows from (2.11) and (2.12) that

rV-l

(2.14) Lv=  £  Cj(t)Z(x,t)J,

7 = 0

where the Cj are distributions in t only. Let d}, j = 0,_¿V - 1, be distributions in

f only such that ddj/dt = Cj, j = 0,..., N - 1, and define

7V-1

(2.15) w(x,t)= £ <//(f)Z(*,0y-
7 = 0

Hence L(t;-w) = 0, with v — w smooth in / with values in the distributions in x.

Since v is continuous, a simple induction on N shows that v - w is also continuous.

Now for / > 0, the map (x, t) -* Z(x, t) is a diffeomorphism into the lower half

plane taking L into a multiple of 3/3Z. Hence we see that there is a holomorphic

function J in the lower half plane such that

(2.16) v-w = J°Z.

Since v - w is continuous, J is continuous up to the real axis. Hence for r > 0 we

have

u = Ü = L$v = L%(J° Z + w) = L%(Jo Z) = (dNJ/dZN)°Z.

Since J is continuous to the real axis, it follows that dNJ/dZN is holomorphic of

slow growth in the lower half plane. Similar arguments apply for / < 0.   Q.E.D.

The next result shows that the equation Lu = 0 will have many solutions provided

that the trace Z0(x) = Z(x, 0) is very well behaved.

Theorem 2.3. Let L be defined in a neighborhood of the origin having the form

(1.19) and Z be as defined above. Then there exists a neighborhood of the origin U and

u g C°°(U) such that

(2.17) Lu = 0    in U,       du/dx * 0    in U

if and only if Z0 is real analytic near the origin.

Remark 2.4. Note that Theorem 2.3 combined with Remark 1.4 shows that the

local analyticity of Z0 is equivalent to the fact that L can be transformed into the

Mizohata operator.

Proof of Theorem 2.3. Let U be a neighborhood of the origin and u g C°°(Í7)

such that (2.17) holds. We may assume that the trace u(x,0) is real valued. Indeed

this follows from an application of the Riemann mapping theorem, as in the proof of

Lemma 1.2. By Theorem 2.1 we see that there exists a function J holomorphic in the

lower half plane such that

(2.18) u(x,t) = J(x- it2),       (jc.r)el/-.
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Our assumptions on u show that J is real on the real axis and smooth up to the real

axis. Hence the trace u(x,0) is real analytic near the origin by the reflection

principle. Similarly there exists H holomorphic in the lower half plane such that

u(x,t) = H(Z(x,t)),       (x,t)^U+.

Again H is smooth up to the real axis and real valued there. Hence the trace of H on

the real axis is real analytic. Furthermore, dH/dx + 0. Hence Z0 is real analytic

near the origin.

Next assume that Z0 is real analytic near the origin. For small (x, t) define

,      »      ¡Z(x,t), r>0,
2.19 u(x,t)={      ,

\Z0(x-it2),        t<0.

It follows that u is smooth since (d2k + 1Z/dt2k + l)(x,0) = 0 for k = 0,1,2,....

Q.E.D.

3. Characterization of the range. Let L be an almost Mizohata operator defined in

a neighborhood of the origin U having the form (1.19). Our aim in this section is to

characterize all smooth / defined near the origin for which there exists a distribution

u defined near the origin such that

(3.1) Lu=f.

Throughout this section we will use the function Z introduced in §2. In addition to

the properties of Z listed there, we may also assume that (3Z/3x)(0,0) = 1.

Let /g C°°(U). We will begin by trying to construct a solution u to (3.1) as a

Fourier integral distribution. In general no such u need exist since L is not solvable

near the origin. But, in the course of our attempt, a condition on / will naturally

appear. This will allow us to solve (3.1). Later we will show this condition to be also

necessary for (3.1) to hold.

Before starting we pause to recall a generalized Fourier inversion formula. Let

g g C¡f(U+) and suppose we know that

(3.2) |lm(Z(x, t) - Z(y,t)) | < ||Re(Z(x, t) - Z(y, t)) \

for (x, t) g U+, (y, t) G U+. Then we have

(3.3) g(x,l)=  lim   f  f e'^-'^y^-^g(y,t)dZ(y,t)^-.
r-o+ -Loo -Loo 2tr

Here the convergence is valid in C°°(U+). If g g U/HU*) or E'(C/+), then (3.3) is

valid in these topologies also. For a proof see [2, p. 344]. We are now ready to

attempt to solve (3.1). First choose x G Cçf(U) such that x = 1 near the origin, with

supp x contained in a neighborhood where / is defined. We introduce

(3.4)

u22(x,t) = - lim    i"  H   r e^**^-2^^-*2 ^(Xf)(y,s)dZ(y,s)ds.
e^O*    J,       -Loo   ^0 2^

We claim that if U is chosen small enough, w22 g Cx(U+). This will take several

steps to prove.
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Write Z = a + ib, a and b real. LZ = 0 is then equivalent to

(3.5) a, = 2t(l + p)bx,

(3.6) b,= -2t(l + p)ax.

Since av(0,0) = 1, we see by integrating (3.6) with respect to t that, if U is small

enough, there exists C, > 0 such that

(3.7) b(x,t)-b(x,s)> Cf(s2 - t2)

for(jc,/)G U+,(x,s)<E U+.

Since bx(0,0) = 0, by integrating (3.5) with respect to t we see that if U is small

enough we have

(3.8) \a(x,t)-a(x,s)\^Cf\t2- s2\

for (x, 0 g V+, (x, s) g Ü+. The fact that bx(0,0) = 0 also implies that if we shrink

U we may assume

(3.9) l*(*.0-*O'.0l<tl*-.H
for(x,r)G Ü+, (y, í) e £/+.

Now (3.5) and that fact that ax(0,0) = 1 imply that

(3.10) a(x,t) = x + 0(x2) + 0(t2).

Hence we have, if U is small, a smooth A such that

(3.11) a(x,t) - a(y,t) = x - y + A(x,y,t)    in f7+

with|i4(x,^,0l< il*-Gr-
ille first problem in studying (3.4) is that of estimating the exponential term. We

see that we may deform the path of £ integration into the contour (as in [9, §6])

(3.12) ,.,(, + |iZi).        p>0,

in the complex plane.

We must now estimate, assuming 0 < t < s,

(3.13) Im[(Z(jc,/) - Z(y,s))$ + i«f2]

= p(b(x,t) - b(y,s)) + ii^A(a(x,t) - a(y,s)) + |«1 vv-'V     "V"""  •   4V

, Pi i      1   i i      3    ,+ 2 I* "JM ~ gp'* "-^ + 4£p

>fci(,2-/2)+^|x-J| + |£p2^0

for (x, 0 g Ü+, (y, s) g Ü+. The above estimates follow from (3.7), (3.8), (3.9) and

(3.11).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



672 NICHOLAS HANGES

Next we introduce the operator

(3.14) i,-i±

and its formal transpose L'. It is easy to show by induction that for any integer

N > 1 we have

(3.15) (l-L,)N(e^) = (l+ti)N(e-^)

and

(3.16) {l-L'0)N(Zxv) = Zx(l+L0)Nv

for any smooth v.

Hence we see that the right side of (3.4) can be written as

roo     c»     /■»      ...      ..      .,, „, . . N/•oo       /*0C        /-OO , ,,

(3.17)      - eiZ^-*X\ + ii)-N(\-LQy
Jt       J-oa   J0

.(e-^^)^(xf)(y,s)dZ(y,s)ds

/■oo      /*oo      r

(3.18) =-/    /    /Jt       J-x   J0

00       /.00        /-OO ,
ei[Z(x,/)-Z(.v,i)lí-fi-

•(1 + fO""^(l + L0)A'(x/)(^í)í/Z(^,,)*.

Since we can choose JV as large as we please in (3.18) and we can make the

deformation (3.12), it follows that w22 g Cx(Ü+).

Using similar arguments we also define

(3.19)

u21(x,t)=   lim   ['  C   f°   ei[Z^')-z^s)U-^p-(xf)(y,s)dZ(y,s)ds
f^0+   4)   J-oo   J-œ ¿7r

for(x, 0 G Ü+,

(3.20) ull(x,t)=   lim    ['T   f°   e^-y-H^-'2)]^^2^(xf)(y,s)dyds
e^0+   •'o   y-oc   -L-oo ¿7T

for(x, i) g £/-.

(3.21) w12(x,/)=   lim   /"'     T   /*0°e'l^+'(j2-'2)1£-tí2^(x/)(^,í)^^
f-0+   ^-oo   y-oo   A) ¿7r

for (x, 0 g L7-.

We see that  u2\ u22 g C=°(í7+) and  m11, m12 g C^ÏT). Now let  H  be the

Heaviside function, that is

(3.22) H(t) = {l       ;;j;

Define « as follows:

(3.23) «(*,/) = ff(0(«21(*.0 + u22(x,t)) + H(-t)(un(x,t) + u12(x,t)).
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Notice that (3.9) and (3.11) imply that (3.2) holds. Hence the Fourier inversion

formula (3.3) is valid, and we have

(3.24) (Lu)(x,t) = (Xf)(x,t) - Ô(t)®(Kf)(x)

for (x, t) g U, where we define K = K++ K~,

(3.25)

(K+f)(x)=   Urn   H   r   j™ eW-*-^^-*2^(xf)(y,s)dZ(y,s)ds
f^0+  •'O     -Loo Jo ¿v

and

(3.26) (*"/)(*)-   lim+/°    f f ei<*-r+"2K-*2£(Xf)(y,s)dyds.
e^0+   J-<x,   ^-oo   J0 L™

We now introduce the crucial condition:

There exist two holomorphic functions, A and B, of slow growth in the lower half

plane such that

(3.27) (Kf)(x)=   lim A(Z(x,t))+   lim  B(x - it2),
t-0+ r->0"

where the limit is taken in the distribution sense.

If we assume that / satisfies (3.27), we may define the distribution

(3.28) v(x, t) = H(t)A(Z(x, t)) - H(-t)B(x - it2).

Note that

(Lv)(x,t) = 8(t)®(Kf)(x).

Hence we see that

(3.29) L(u + v) = /   near the origin.

So we see that (3.27) is sufficient to solve (3.1).

Assume that (3.1) holds for some smooth /. For the moment we will assume

u g C1. The case of general distribution solutions will be handled later. Consider the

quanity

(3.30)

(Ktf)(x) = f  T   f e^^-^^-^2§(xf)(y,s)dZ(y,s) ds,
J0      •'-oo   J0 L^

where x G C(f (R2), X = 1 near the origin and the support of x is contained in a

neighborhood of 0 where both u and / are defined. Using the fact that (3.1) holds,

we integrate by parts to obtain

(3.31) K:f=i:f+jt+f,
where we define

(3.32)

(/t7)(*)= -C  T   f e«z^-^^2£(Lx)(y,s)u(y,s)dZ(y,s)ds
J0      •'-oo    •'0 Zw

and

(3.33)    (Je+f)(x) = - f   f e*z<^-z^-*2^x(y,0)u(y,0)dZ(y,0).
•'-oo  •'0 l™
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First we analyse /+/. As before we pass to the contour (3.12). Estimate (3.13) then

tells us that there exists C, > 0 such that

(3.34) lm[(Z(x,0)-Z(y,s))$ + iet;2}> |C>2 + %\x -y\ + \eo2.

Since x = 1 near the origin we see that Lx = 0 near 0. Hence either y or s is strictly

bounded away from 0 throughout the domain of integration. It follows then that if x

is small enough, there exists C > 0 so that

(3.35) Im[(Z(jc,0) - Z(y,s))¡ + ief2] > Cp + W-

This estimate implies that lime_<0+ I^f is a real analytic function of the variable

Z(x, 0). That is, there exists a function A+ holomorphic near the origin in C such

that

(3.36) lim   (i;f)(x) = A + (Z(x,0)).
f^o+

Now we turn our attention to Je+f. Observe that by the generalized Fourier

inversion formula (3.3) we have for small x

(3.37)

lim Je+f(x)= -u(x,0)
t^0 +

+  lim    T   [° ei[Z^-0)-Z('-°^~^2^x(y,0)u(y,0)dZ(y,0).
r^0+   •'-oo   •'-oo 277

In the last term of (3.37) we see that | < 0 throughout the domain of integration.

Hence there exists a function B+ holomorphic of slow growth in the lower half

plane such that

(3.38) lim J+f(x)=-u(x,0)+   lim B+(Z(x,t)).
e^0+ r^0 +

Combining (3.36) and (3.38) we see that there exists a function A holomorphic of

slow growth in the lower half plane such that

(3.39) K+f(x) = -u(x,0) +   lim A(Z(x,t)).
t^0 +

Similar arguments also show that there exists a function B holomorphic of slow

growth in the lower half plane such that

(3.40) K~f(x) = u(x,0) +   lim B(x- it2).
t->0~

Combining (3.39) and (3.40) we see that (3.27) is necessary for (3.1) to hold,

assuming u g C1. In case (3.1) holds with u g Si' we use the operator L0 defined in

(3.14). Since u is locally of finite order we know there exists aceC1 and an integer

N so that

(3.41) u = Lgu    inU+.

Using the fact that L and L0 commute we may substitute L$v for u in (3.30) and

proceed in a straightforward way. We leave the details to the reader. We may

summarize the results of this section in the following.
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Theorem 3.1. Let L be an almost Mizohata operator defined in a neighborhood of

the origin U having the form (1.19). Let f G C°°(U). Then there exists a distribution u

such that Lu = fnear the origin if and only if f satisfies (3.27).

Remark. Condition (3.27) is independent of the choice of the cut off function x-
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