The Stefan problem with heating: appearance and disappearance of a mushy region
HTML articles powered by AMS MathViewer
- by M. Bertsch, P. de Mottoni and L. A. Peletier
- Trans. Amer. Math. Soc. 293 (1986), 677-691
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816319-3
- PDF | Request permission
Abstract:
We consider a material which is initially in the solid state and then, due to heating, starts to melt. We describe the appearance of a so-called mushy region, i.e., a region in which the material is in neither a solid nor a liquid state. The main result is that after a finite time the mushy region has disappeared and only the solid and the liquid phases have remained.References
- Donald Aronson, Michael G. Crandall, and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), no. 10, 1001–1022. MR 678053, DOI 10.1016/0362-546X(82)90072-4
- D. R. Atthey, A finite difference scheme for melting problems, J. Inst. Math. Appl. 13 (1974), 353–366. MR 351295
- M. Bertsch, P. de Mottoni, and L. A. Peletier, Degenerate diffusion and the Stefan problem, Nonlinear Anal. 8 (1984), no. 11, 1311–1336. MR 764915, DOI 10.1016/0362-546X(84)90018-X
- Avner Friedman, One dimensional Stefan problems with nonmonotone free boundary, Trans. Amer. Math. Soc. 133 (1968), 89–114. MR 227626, DOI 10.1090/S0002-9947-1968-0227626-9
- B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. (2) 13 (1976), no. 1, 103–106. MR 399658, DOI 10.1112/jlms/s2-13.1.103
- A. M. Meĭrmanov, Structure of the generalized solution of the Stefan problem. Periodic solutions, Dokl. Akad. Nauk SSSR 272 (1983), no. 4, 789–791 (Russian). MR 722331
- O. A. Oleĭnik, A method of solution of the general Stefan problem, Soviet Math. Dokl. 1 (1960), 1350–1354. MR 0125341
- Maura Ughi, A melting problem with a mushy region: qualitative properties, IMA J. Appl. Math. 33 (1984), no. 2, 135–152. MR 767518, DOI 10.1093/imamat/33.2.135
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 677-691
- MSC: Primary 35R35; Secondary 35K65
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816319-3
- MathSciNet review: 816319