Equilibrium points of nonatomic games over a Banach space
HTML articles powered by AMS MathViewer
- by M. Ali Khan
- Trans. Amer. Math. Soc. 293 (1986), 737-749
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816322-3
- PDF | Request permission
Abstract:
Schmeidler’s results on the equilibrium points of nonatomic games with strategy sets in Euclidean $n$-space are generalized to nonatomic games with strategy sets in a Banach space. Our results also extend previous work of the author which assumed the Banach space to be separable and its dual to possess the Radon-Nikodým property. Our proofs use recent results in functional analysis.References
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- Truman F. Bewley, The equality of the core and the set of equilibria in economies with infinitely many commodities and a continuum of agents, Internat. Econom. Rev. 14 (1973), no. 2, 383–394. MR 391904, DOI 10.2307/2525928
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310 J. Diestel, Remarks on weak compactness in ${L_1}(\mu ,X)$, Glasgow Math. J. 18 (1977), 87-91.
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964 N. Dincleanu, Linear operations on ${L^p}$-spaces, Vector and Operator Valued Measures and Applications (D. H. Tucker and H. B. Maynard, eds.), Academic Press, New York, 1973. P. Dubey, A. Mas-Colell and M. Shubik, Efficiency properties of strategic market games: An axiomatic approach, J. Econom. Theory 22 (1980), 339-362.
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126. MR 47317, DOI 10.1073/pnas.38.2.121
- I. L. Glicksberg, A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170–174. MR 46638, DOI 10.1090/S0002-9939-1952-0046638-5
- Werner Hildenbrand, Existence of equilibria for economies with production and a measure space of consumers, Econometrica 38 (1970), 608–623. MR 282632, DOI 10.2307/1912197
- Werner Hildenbrand, Core and equilibria of a large economy, Princeton Studies in Mathematical Economics, No. 5, Princeton University Press, Princeton, N.J., 1974. With an appendix to Chapter 2 by K. Hildenbrand. MR 0389160
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- M. Ali Khan, Equilibrium points of nonatomic games over a nonreflexive Banach space, J. Approx. Theory 43 (1985), no. 4, 370–376. MR 787315, DOI 10.1016/0021-9045(85)90112-1 —, On the integration of set-valued mappings in a nonreflexive Banach space. II, Johns Hopkins Working Paper No. 109, September 1982 (Simon Stevins, forthcoming).
- Ronald Larsen, Functional analysis: an introduction, Pure and Applied Mathematics, No. 15, Marcel Dekker, Inc., New York, 1973. MR 0461069
- P. Masani, Measurability and Pettis integration in Hilbert spaces, J. Reine Angew. Math. 297 (1978), 92–135. MR 463394, DOI 10.1515/crll.1978.297.92
- Andreu Mas-Colell, A model of equilibrium with differentiated commodities, J. Math. Econom. 2 (1975), no. 2, 263–295. MR 395752, DOI 10.1016/0304-4068(75)90028-2
- David Schmeidler, Equilibrium points of nonatomic games, J. Statist. Phys. 7 (1973), 295–300. MR 465225, DOI 10.1007/BF01014905
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
- Eugene Wesley, Borel preference orders in markets with a continuum of traders, J. Math. Econom. 3 (1976), no. 2, 155–165. MR 439054, DOI 10.1016/0304-4068(76)90024-0
- Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 737-749
- MSC: Primary 90A14; Secondary 28C20, 46N05, 90D10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816322-3
- MathSciNet review: 816322