Maximal functions associated with curves and the Calderón-Zygmund method of rotations
HTML articles powered by AMS MathViewer
- by Shuichi Sato
- Trans. Amer. Math. Soc. 293 (1986), 799-806
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816326-0
- PDF | Request permission
Abstract:
Let ${\delta _t}(t > 0)$ be a dilation in ${{\mathbf {R}}^n}(n \geqslant 2)$ defined by \[ {\delta _t}x = ({t^{{\alpha _1}}}{x_1},{t^{{\alpha _2}}}{x_2}, \ldots ,{t^{{\alpha _n}}}{x_n})\qquad (x = ({x_1},{x_2}, \ldots ,{x_n})),\] where ${\alpha _i} > 0(i = 1,2, \ldots ,n)$ and ${\alpha _i} \ne {\alpha _j}$ if $i \ne j$. For $\nu \in {{\mathbf {R}}^n}$ with $|\nu | = 1$, let ${\Gamma _\nu }:(0,\infty ) \to {{\mathbf {R}}^n}$ be a curve defined by ${\Gamma _\nu }(t) = {\delta _t}\nu (0 < t < \infty )$. Using maximal functions associated with the curves ${\Gamma _\nu }$, we define an operator $M$ which is a nonisotropic analogue of the one studied in R. Fefferman [2]. It is proved that $M$ is a bounded operator on ${L^p}({{\mathbf {R}}^n})$ for some $p$ with $1 < p < 2$. As its application we prove the ${L^p}$ boundedness of operators of the form ${T^{\ast }}(f)(x) = {\sup _{\varepsilon > 0}}|{T_\varepsilon }(f)(x)|$, where ${T_\varepsilon }$ is an integral operator associated with a variable kernel with mixed homogeneity.References
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- R. Fefferman, On an operator arising in the Calderón-Zygmund method of rotations and the Bramble-Hilbert lemma, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 12, , Phys. Sci., 3877–3878. MR 706542, DOI 10.1073/pnas.80.12.3877
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650
- Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101–104. MR 265995, DOI 10.4064/sm-35-1-101-104
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 799-806
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816326-0
- MathSciNet review: 816326