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ON MULTIPLICATION ALGEBRAS
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DAVID R. FINSTON

Abstract. The basic properties of multiplication algebras of nonassociative algebras

over rings are introduced, including a discussion of multiplication algebras of tensor

products of algebras. A characterization of semisimple artinian multiplication alge-

bras is given along with a discussion of the nature of the simple factors of a

multiplication algebra modulo its Jacobson radical. A criterion distinguishing the

multiplication algebras of certain associative algebras is proved. Examples are

included to illustrate certain proved results.

I. Introduction. Let Ä be a commutative, associative ring with 1. A binary R

algebra is a pair (A,p), where A is an R module and ju: A <8>RA -» A is an R

module homomorphism. We will suppress the homomorphism /x and refer to the R

algebra A; p(a ® b) will be written ab. The associative R subalgebra of the algebra

of R endomorphisms of a generated by the endomorphisms Xy c -* ac, ph: c —> cb

for all a, b in A, is denoted J(%fA) and referred to as the multiplication ideal of A.

The subalgebra of EndR(^l) generated by J(\(A) and id^ is called the multiplica-

tion algebra of A and is denoted JtR(A). Clearly, JtR(A) is a two sided ideal in

JtR(A). We will suppress the subscript R if no ambiguity arises.

Jacobson [6] initiated a study of multiplication algebras of algebras of finite

dimension over a field. His main result in that context uncovered a striking

relationship between the structure of the associative unital algebra J((A) and the

not necessarily associative algebra A.

(1.1) Theorem (Jacobson). A necessary and sufficient condition that an algebra A

be isomorphic to a direct product of simple algebras is that J((A) be semisimple.

This theorem is included in Theorem (2.7).

Albert [1] made use of (1.1) to propose a definition for the radical of an algebra of

finite dimension over a field. Defining the radical of an algebra to be the intersection

of all ideals for which the quotient algebra is a product of simple algebras, the

following theorem was obtained.

(1.2) Theorem (Albert). Let A be a finite dimensional algebra with a semisimple

quotient, and let J denote the Jacobson radical of Jt(A). Then either A /JA is

isomorphic to a product of simple algebras and JA is the radical of A, or A/JA is

isomorphic to a product of simple algebras and a null algebra.  In the latter case,
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808 D. R. FINSTON

A/JA = SY\ N with S isomorphic to a product of simple algebras and N null; the

radical of A is JA + q~l(N), where q: A -» A/JA is the quotient homomorphism.

Müller [7] used the notion of separability for associative algebras over commuta-

tive rings to define separability for arbitrary algebras finitely generated and projec-

tive as modules over commutative rings.

(1.3) Theorem (Müller). The multiplication algebra of a separable associative

algebra is again separable.

Röhrl [8], Wisbauer [9] and Finston [4] have made extensive use of the multiplica-

tion algebra in their investigations of general nonassociative algebras. Farrand [2]

studied the multiplication algebra in terms of its module action (see §11 below).

In this note, we begin a systematic study of multiplication algebras with the

eventual goal of characterizing their structure. The main results we obtain are a

characterization of all finite dimensional semisimple multiplication algebras, and a

condition necessary for an associative algebra to be the multiplication algebra of an

associative algebra. Examples are given to show that not all multiplication algebras

arise as multiplication algebras of associative algebras.

II. Preliminary notions. The R algebra A has the structure of a left Jt(A) module

whose submodules are exactly the two sided ideals of A. For an ideal I oí A,

(I: A) = (t (=Jt(A): t(A) c /} is a two sided ideal of Jt(A). If J is a left ideal

of Jt(A), then J(A) = [r(a): t e J, a ^ A) is a two sided ideal of A. The

following are some easy consequences of the definitions:

(2.1) (1) / c J -> (I:A)(Z (J:A),

(2)Jczj^J{A)<zJ;(A),

(3)(I:A)(A)c_I,

(A)(J(A):A)Z)J,
(5) J(A) c (J(A) : A)(A) c J(A); hence J(A) = (J(A) : A)(A)

(6) (7: A) 3 ((/: A)(A) : A) d (I: A); hence (/: A) = ((I: A)(A) : A),

(l)J/(A/I) = Jf(A)/(I:A).
We will call an R algebra simple if its only proper ideal is the zero ideal. Note

that with this definition, a one dimensional algebra in which all products are 0 (i.e. a

null algebra) is simple.

If A is an algebra over the commutative ring 5 and R is a subring of S, then A

carries the structure of an R algebra. Clearly, Jt£(A) = Jt%(A); however, JtS(A)

= JtR(A) if and only if S is a subring of JtR(A).

An important instance of the above occurs when the centroid Z(A), defined by

Z(A) = End^(A)(A), is commutative; in this case A has the structure of a Z(A)

algebra, and R c Z(A). Example 1 of §IV shows that Jt7(A)(A) need not equal

JtR(A) even when Z(A) is commutative. The next lemma and its corollary are well

known (e.g. Herstein [5], p. 46), although the formulation as been modified slightly.

(2.2) Lemma. Let A be an R algebra and Z the centroid of A. Then Z commutes on

A2. In particular, if Hom^{A)(A/A2, A) = (0), then Z(A) is commutative.
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Proof. Let t, \p e Z(A), a,b g A. Then

TxP(ab) = T(t|/op6(a)) = TpA°t//(a) = r^(a)b = r°X^a)b = ^(a)r(b).

Similarly,

T\p(ab) = t\}/ ° Xab = r(a)\p(b) = \¡n(ab)    by the previous computation.    D

The centroid of any unital or simple algebra is thus commutative, as is the

centroid of any algebra A satisfying A2 = A, or Jt*(A) = Jt(A) (since A2 =

Jt*(A)A).

(2.3) Corollary. If A is a simple R algebra, then Z(A) is a commutative field.

Proof. Use Lemma 2.2 and Schur's lemma.   □

Formation of the multiplication algebra is not a functor on R algebras, as the

following example shows. Consider C, the field of complex numbers, and H, the

algebra of real quaternions as algebras over R, the field of real numbers. Embed

C -» H via a + bi -> a + bi, where i2 = -1 and 1, i, j, k is the usual basis for H.

Since X, - Pi doesn't vanish on H, there is no natural extension of the embedding

C -» H to a homomorphism JtR(C) -^ Jt R(H). Nevertheless, the multiplication

algebra does respect certain constructions and homomorphisms.

(2.4) Lemma. Let f: A -» B be a surjective homomorphism of R algebras. Then f

induces a surjective homomorphism f: JtR(A) -* Jt R(B).

Proof. Set f(Xa) = A,(a) and f(ph) = Pflb) for all a, b in A. If the extension to

Jt(A) is well defined, then surjectivity will follow from surjectivity of /.

Suppose $ is a sum of compositions of right and left multiplications representing

0 in EndR(A). Let b = f(a) G B. Since / is a homomorphism, 0 =/($(a)) =

The assertion of part (a) of the next lemma appears in [7] without proof. The

proofs of parts (b) and (c) rely on the notion of a projective basis for a finitely

generated projective module whose definition is recalled here. A projective basis

( f¡, jtj; | i < j < n ) for an R module M consists of a collection of R module

homomorphisms / G HomR(M, R) and elements x, G M satisfying x =

L"=i/,(x)x, for all x G M. Necessary and sufficient for M to be a projective R

module is the existence of a projective basis.

(2.5) Lemma. Let A and B be R algebras finitely generated and projective as R

modules, and let S be a commutative associative, unital R algebra.

(a) The homomorphism h: A -* S ®R A given by a -* 1 ® a induces a homomor-

phism h: Jt(A) -» S ®RJt(A). Moreover, S ® JtR(A) =Jts(S ®RA).

(b) The inclusions JtR(A) -* EndR(A) and JtR(B) -* EndR(B), and the isomor-

phism EndA(¿() ®REndR(B) = EndR(A ®R B) induce an algebra homomorphism h:

JtR(A) ®RJtR(B) -» EndR(A ®R B).

There is an injective R algebra homomorphism

h:^t(A®RB)-^im{h\Jt. ).
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(c) The map h in (b) extends to an injective homomorphism JtR(A ® B) -* im(h),

which is an isomorphism if Jt^(A) = JtR(A), Jt%(B) = JtR(B), and either A or B

has a unit element.

Proof, (a) The homomorphism JtR(A) -» S ®RJtR(A) is given by $ -> ls ® 3>.

Following with the isomorphisms S ®R EndR(A) = Ends(S ®R A), we obtain an

injection S ®RJt(A) -^Jt(Ss ®RA). That this map is also surjective follows by

observing that

s®Xa^XsSa,    s®pa^pst¡Sla,    lSSMid -> idSSM

which generate Jts(S ® A).

(b) We follow an element of Jt^(A ®RB) along the standard isomorphism

EndÄ(^ ®R B) -* EndR(A) ®R EndR(B).

Let {/, x,}, {gj,yj} be projective bases for A and B, respectively. Set my.

A ®RB -* A ®R EndRB to be the map

try a ® b -> a ® g ( ) • b.

Set Q'. A ® R EndÄ -> EndRA ® End BR to be the map

By a ® h -> f( ) ■ a® h.

The isomorphism is then given, for $ G EndR(A ® B) by

*-»L*/(v*(*i3.>y-))-
'.y

Observe that, for a ^ A, Xa = E,/,( )ax, and, for b £ B, Xh = £,£,( ) ■ 6y,-.

Under the above isomorphism,

*«•*-* L^K-i**.-® byj))
i.j

= L9,(ax,®g,(    )byj)
ij

-!/,( )(**,■«*,( )ty)
ij

= h(Xa®Xh).

Similarly, pae>h -> h(pa ® pb).

Extending the map in (a) to Jt(A ® B), observe that if Jt*(A) = Jt(A) and

Jt*(B) = Jt(B), and A or B has a unit, then id^ ® r and <¡> ® idfi are in the image

for all t G„#(.B)and<f> (EJt(A).   □

Example 4.4 provides a simple, finite dimensional algebra A for which

h(Jt(A ® A)) c im(h).

(2.6) Lemma. Let {^4,|1 < i < zz} be a finite collection of R algebras. Then

(a) jt*(U^fA,) = n;LfJt*(A).

(b) IfJt*(A,) = JtR(A,) for at least n - 1 A¡, then

^Áua Un^(4



ON MULTIPLICATION ALGEBRAS 811

(c) Conversely, if jrf= n/=1 s#¡, an associative unital R-algebra, is isomorphic to

the multiplication algebra of an R algebra A, then A = (Y[f=fAi)Y[N, where r — 1 <

s < t, N is a null algebra, and stft = Jt(A¡) for 1 < i < s.

Proof. To prove assertion (a) it suffices to consider zz = 2. The projections

AT\B->A and ATI B -> B induce surjections Jt*(AU B) ^ Jt*(A) and

Jt*(AUB) -*Jt*(B), which in turn induce Jt*(AUB) -> Jt*(A)UJt*(B). The

latter is easily seen to be an isomorphism.

Assertion (b) follows from the observation that for at least zz - 1 A¡, id^, G

Jt*(A¡). Their images in Jt*(UA)i) together with idn¡A¡ ̂ J((X\A¡) yield the

image of id At. g Jt( Yl A¡) for all » < i < n.

To prove the converse, (c), assume JtR(A) = n/=1 U¡. Then

yl =JtR(A)A = in I/,. M = n (U,A)

since the t/,/4 are orthogonal ideals of A.

Let Aj = l/,.v4, and set N = Tl{Aj\A2 = (0)}. After a renumbering, we obtain

A = (Uf=lAi)UN. Denote by /, the image of (Yli + jAJTlN in ,4. Then ,4, =

A/Ij, and

uf(^) 3^)/(/,:^) s nií/(n^:>i)
V i *j I

= UU,/Y\(U,A:A)=Ur    D
i+j

(2.7) Theorem. The multiplication algebra of a finitely generated R algebra is

semisimple artinian if and only if R is a product of fields and A is isomorphic to a finite

product of simple R algebras. Moreover, writing A = AST\N, where A2 = As, N is

null, and K s Ä/AnnN, we have JtR(A) = JtR(AS)YIK, and JtR(AS) is isomor-

phic to a product of full matrix rings over commutative fields.

Proof. Assuming JtR(A) semisimple artinian, we obtain that R is artinian from

the Wedderburn-Artin theorem and the fact that R is a commutative subring of

JtR(A). Semisimplicity of R follows by observing that a nilpotent ideal in R

extends to a nilpotent ideal in JtR(A). Given the structure of R and Lemma (2.6),

we may assume R is a field and reduce to showing that JtR(A) is simple artinian if

and only if A is simple with A2 4= (0), or A is null. In the latter case, JtR(A) s R.

Suppose JtR(A) is simple artinian. As a left JtR(A) module then, A decomposes

as a finite direct sum of simple JtR(A) submodules A¡, 1 < i < n. These, in turn,

are simple, orthogonal ideals of A, and hence simple, orthogonal subalgebras of A.

By (2.5), Jt%(A) = YliJtKA,), but simplicity of JtR(A) forces either Jt(A) =

Jt*(A) = T\?=fJt*(Ai) or Jt*(A) = (0). In the latter case, Jt(A) = R, and A is

null. In the former case, n < 2. If n = 1, then A is simple with A2 4= (0). If zz = 2,

then A = AY\N, where A2 + (0) and A' is null. Applying (2.6) again, we have

Jt(A) = Jt(A)WR,a contradiction.

To prove the converse, let A be a finite dimensional simple algebra over a field R.

If A2 = (0), then  Jt(A) = R. Otherwise,   A2 = A  and the centroid of A  is a
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commutative field. Since A is a simple faithful module for Jt(A), Jt(A) is

primitive, hence semisimple, hence simple by (2.6). By the density theorem, Jt(A)

= EndZ(A)(A).    D

III. Particular algebras. One consequence of Theorem (2.7) is that certain algebras

cannot arise as multiplication algebras. Indeed, the inspiration for that result was a

question posed by McCrimmon and Dorfmeister as to whether a divison algebra

could arise as the multiplication algebra of a finite dimensional algebra. In this

section, we investigate the interplay between the properties of a finite dimensional

algebra and the simple factors of its multiplication algebra modulo the Jacobson

radical. We begin with a second proof, due to Lance Small (personal communica-

tion), that noncommutative division rings do not occur as multiplication algebras.

His argument has no dimensionality constraint.

(3.1) Theorem. // a divison ring is a multiplication algebra, then it must be

commutative.

Proof. Assume D is a divison ring isomorphic to Jt(A). Then for any a g A,

Xa — pa is either identically zero or invertible. However, a is in the kernel of

Xa — pa, so that A is commutative.

Now observe that Jt(A) is also commutative. It suffices to show that Xa°Xh =

Xh ° Xa for all a, bin A since Xa = pa for all ael

Aa°A/,(a) = a(ba) = a(ab) = (ab) a = Xah(a).

Thus Xa°Xh = Xah. Finally

A„Z> =  A/,a =  A/,°AU = A«°AZ,-

The following proposition extends Theorem (2.6).

(3.2) Proposition. Let A be a finite dimensional algebra, and J the Jacobson

radical of Jt(A). If J is a maximal ideal, then Jt(A)/J is isomorphic to a full matrix

ring over a commutative field.

Proof. Jt(A)/J is a simple ring, and JA is an ideal of A. Comparing ideals in

Jt(A), we have J c (JA : A) c Jt(A). By maximality, J = (JA: A), so that

Jt(A/JA) = Jt(A)/(JA : A) = Jt(A)/J. Thus Jt(A)/J is the multiplication alge-

bra of a simple algebra. The result now follows from (2.7).    D

In view of (2.7) and (3.2) one suspects that the simple rings appearing as the

factors modulo the Jacobson radical of the multiplication algebra of a finite

dimensional algebra are rather special. Example 2 of §IV shows that matrix rings

over division rings can arise in this context. The next series of arguments elucidates

when this cannot occur.

Let A be an R algebra of finite length as an Jt(A) module. Then A has a

composition series of Jt(A) submodules (= ideals): (0) = /oc/[C  ■ • • c In = A.

Each   I/Ij-f   is   a   simple,   faithful,   and   finitely   generated   module   over

Jt(A)/(Ij_f : Ij);   as   such   JtJ=Jt(A)/(IJ_l:IJ)   is   primitive   and    D} =

End^{A)(Ij/Ij_f) is a divison ring.

(3.3) Lemma. If I2 € L_x, then D¡ is commutative.



ON MULTIPLICATION ALGEBRAS 813

Proof. The argument is an adaptation of the proof of (2.2).

Assuming I2 <t L_x, simplicity of the Jt(A) module Ij/Ij-f implies that it is

generated as an Jt(A) module by (I2 + Ij_l)/Ij_l. Let t, <f> g D¡, f g Jtp and a~,

b g Ij/Ij_x, with ab 4= 0. Under these assumptions, Xs and p-h can be identified

with elements of Jt -, and we have

rtfCaJ) =M(äb)=M{\aCb)) =fTX^(b)=fr[ä^(b)} =fr(ä)^(b).

Alternatively,

7^f(äb) = M(p-h(ä)) = fr[^(â)b\ =f^(â)r(b) = Wirt).

Since /, ä, b were arbitrary, \p and t commute on all of I¡/I¡.x-    □

Suppose, as in the lemma above, that the R algebra A has finite length as an

Jt(A) module. For any composition series (0) = I0 c Ix c ■ • • c In = A we have

J c Ann(Ij/Ij_f) = (Ij_f'. Ij), where J is the Jacobson radical of Jt(A). In case

Jt(A) is artinian, none of the finitely many simple factors of Jt(A)/J annihilates

every composition factor IJI,_X, as A is a faithful Jt(A) module. Thus each simple

factor of Jt(A)/J is isomorphic to some Jt j = Jt(A)/(I}_f: If). We will say that a

composition factor Ij/T-f has square zero if in the algebra A/Ij_x, the minimal

ideal Ij/Ij-f has square zero.

Lemma (3.3) and the above discussion prove

(3.4) Proposition. Let A be a finite dimensional algebra over a field, and J the

Jacobson radical of Jt(A). If, in some composition series of ideals of A, no

composition factor has square zero, then Jt(A)/J is isomorphic to a product of full

matrix rings over commutative fields.

A P

If A is an associative R algebra, the homomorphisms A ->Jt*(A) «- A°v given

by X(a) = Xa, p(a) = pa induce a homomorphism e: A ®R Aop -» Jt%(A), which is

easily seen to be surjective. This observation is exploited in the following theorem.

(3.5) Theorem. Let A be a finite dimensional associative algebra over a field K, and

suppose that A/J is a separable K algebra, where J is the Jacobson radical of A.

Denote by J* the Jacobson radical of Jt*(A). Then either J* is a maximal ideal, in

which case Jt*(A)/J is isomorphic to a full matrix ring over a commutative field, or

at least two factors of Jt*(A)/J are isomorphic to full matrix algebras over commuta-

tive fields.

Proof. The Wedderbum principal theorem asserts that A has a separable

subalgebra S such that A = S © /. Let e: A ®KAop -> Jt*(A), and observe that

with respect to the Wedderburn decomposition of A, we have

A ®KAop = S ®KSop © A ®KJop © / ®KAop.

Moreover, the image of A ® Jop © J ® Aop in Jt*(A) is the Jacobson radical of

that ring. Thus e induces a homomorphism ê: S ®K S°p -> Jt(A)/J. Since all

tensor products are over K, we will suppose the subscript in the remainder of the

proof.
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The separability assumption on S implies that S ® Sop is semisimple. In particu-

lar, S ® Sop has a unit element, so that ê is surjective. Write S = n|_i Rr where the

Ä, are simple separable K algebras; we may assume t > 1.

There is a composition series of ideals of A,

(0) c Jx c J2 ■ ■ ■ <zJm = JcIfC ■■■ c /, = A,

where /,- c /, and L = / _, + R . We examine the affect of ê(S ® 5op) on the

composition factors IJI¡_X = Ä .

Clearly, (/?, ® R°p)Rk = (0) unless i =j = k. Moreover, none of L/L-i has

square zero, so that Jt(A)/(lJ_x : If) = Endfl (1T//,_1), where D; is a commutative

field. Restricting (Rj®R°p) to Ij/L_x, we obtain EadD.(I,-/Ij_l) as a simple

quotient of /?7 ® 7?°p. Thus Jt(A)/^ has at least z factors isomorphic to full matrix

rings over commutative fields.    D

IV. Examples and concluding remarks. Examples (4.1)-(4.4) are finite dimensional

algebras over a field. They are described as follows: a basis e1,..., ed is prescribed,

and all products of basis elements are written down. The multiplication algebras are

subalgebras of d X d matrices relative to the given basis. The convention is to

describe an algebra of matrices by writing a typical element. For example, the

algebra of two by two upper triangular matrices is described by [¡j *]. The radical of

Jt(A) will always be denoted by J.

(4.1) An algebra A whose centroid Z is commutative, but for which Jt(A) í JtZ(A)

(i.e.(Z/A)<tJt(A)).

eV = 0
ele2 = 0

eV = e1

eV = 0     eV = 0     c?V = 0

e2e2 = 0

eV = 0

e\2 e>V

eV = 0    eV = 0

Jt(A) = Z(A)

0
«

0
0

0

ß
a

0

(4.2) An example of a necessarily nonassociative algebra A for which Jt(A)/J has

only one factor isomorphic to a matrix ring over a field. A has basis el, e2, e3, e4, e5

over R. The nonzero basis products are:

ele5

e2e5 =

eV

eV =

e5e2 = -e

e5e3 =
5   4e e   = e

Observe that

es(eV) = eV (e5e5)el = 0.

Using e¡j to denote the ijth matrix unit, we have

Xe5 = e25,    Xe2 = -elsXe3■5 - c25

Pel  = e35

Pe5 = e21

-45' Xe¿ Xe< -31 -42 ■n + e24>

pe2 = -e 45- pe3 = -15'

Ape5)5/2

Pe4

= e

-25'

11  + e22 + e33 + e44-
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Since id^ g Jt(A), e55 G Jt(A). Obvious matrix algebra shows that

Jt(A) =

Note that

a

-c

d
-e

0

0

0

0

0

0

c

a

-e

-d
0

0

0

0

0

0

d
e

a

-c

0

e

-d

c

a

0

0

0

0

0

0

is a nilpotent ideal modulo which Jt(A) is isomorphic to HüR.

(4.3) An example of an associative algebra A satisfying Jt(A)/J separable, and

isomorphic to a product of two full matrix rings and a division ring. Let A = (H T\ R)

© N be the Wedderburn decomposition where N = ©;4_1 R/', H has basis e1, i, j,

k, R has basis e2, and we identify these with their images in A. The multiplication in

A is given as follows:

/'/' = 0

e'/W

f'e2 = /'

ifl=f2

if2 = -fl

ip=f4

if4 = -P

1 < i, j < 4

1 < i < 4

1 < i < 4

y/W3

jf2 = -/4

7/3 = -Z1

y/4=/2

e1*

eV

e2e2

i te i2=j2 = k:

A■J =je

= it = kel

— „i

'J

ß

k, jk = i, ki = j

-k, kj = -i, ik = -j

e

kfx=r

kf2=p

kp = -f2

kp = -fi

All other products are 0.

Note. HNR = N,RNH (0) so that

Jt(A) = (H®RH°PriH® fl°PriR

= M4(R)nRnH©y.

Rop) ®/

(4.4) An example of a simple algebra A over a field K for which Jt(A) = EndK(A),

but Jt(A ® A) S EndK(A ® A). Let A be the two dimensional algebra over any

field K with basis e1, e2 and multiplication

elel = e2,    e2el = 0

Jt(A)

e1e2 =

a    b
c    d

0,    eLe2„2
e\

Setting

f1 = ex ® e\    f2 = e2®e2,    /3 = e1 ® e2,    f4
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A ® A has multiplication

/vi=/2, /2/2=/\ /3/3=/4' /r=/3

all other products are zero. Relative to the basis {/', f2, f\ /4},

Jt(A ® A)

b
d
0

0

0
0
e

The results in this note have the common theme of investigating a multiplication

algebra through its simple factors modulo the Jacobson radical. One issue which

remains to be addressed to the way the radical can lie inside a multiplication

algebra.

Let U be a finite dimensional unital associative algebra over the algebraically

closed field K with Wedderburn decomposition U = S © J. Assume now that U is

embedded unitally as a subalgebra of Jtd(k) so that V = Kd has the structure of a

left U module. If

(*) (0) = /oc/1c ••• oIn=V

is a composition series of left U modules, then J c (L_1 : /,-) for each 1 <y < n.

Relative to a basis for V compatible with (*), the matrices in U can be simulta-

neously brought to block triangular form

R
X

Us
0

R.

where Ä ■ = Md (K), S = TljLx R¡j for some m < zz, and J has its image in strictly

upper triangular matrices.

The following examples indicate that there is a relationship between the "distribu-

tion" of the Ri along the diagonal and the "density" of J which bears on the

question of whether there is an algebra structure on V for which U = Jt(V).

U =
0
a
0

(4.5) 5 = KY\K =

J =

The following argument shows that  U is not isomorphic to the multiplication

algebra of any three dimensional algebra.

Suppose V = Kel + Ke2 + Ke3 has an algebra structure with U = Jt(V). Then V

has a U composition series

(0) = /„ c If = Ke1 c J2 = Ke1 + Ke2 c I3 = V,
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which is a composition series of ideals. Consider the matrix representation of Xei.

Since Xei g (Ix : A), we have

Xa =

Thus e e   = ae , or

But then e2e3 = ae2, so that

This forces a = 0. Similarly

Consider

We have e V = ae1. But

P,>

P,' =

Pei

0 0«
0 0 0
0    0    0

«0/3
0 a 0
0     0     y

Ô 0 0
0 5a
0    0     0

0 0 0
0 0 0
0    0    0

a 0 ß

0 a 0
0    0     0

0 0 0
0 0 0
0    0    0

forces a = 0. Furthermore, e2e3 = /3e1 implies

P«3

a    ß    y

0     a     0

L0     0     8
and thus

Similarly,

Xe-,
0 0 0
0 0 0
0     0     0

0    0    0
0    0    0

.0    0    0.

This leaves e3e3 = ae1 + ße3 as the only possible nonzero product. But U is not

generated by

0    0    a
0    0    0      and

0    0/3

1 0 0
0 1 0
0    0    1
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(4.6) The algebras

Vi a

0
and U2 =

0
a

0

are both multiplication algebras of three dimensional algebras. Ux =Jt(Ax), where

Ax = E3=1ATe' and

e'e2 = e\ e2el = e1, 2   2
e e e2,    e3e3 = el

-3
All other products are zero. U2 = ^f(y42), where A2 = L3=, /¡Te' and

exe3 = e1,    e2e3 = e2.

All other products are zero.

The crucial ingredients in (4.6) missing from (4.5) are sufficient nonzero products

to pick up either idempotent

or

An analysis of multiplication algebras based on this idea is in progress [3].

The author  wishes   to thank   the referee  for a very careful reading  of the

manuscript and for many helpful suggestions and corrections to the original.

References

1. A. A. Albert, The radical of a nonassociative algebra. Bull. Amer. Math. Soc. 48 (1942), 891-897.

2. Scott M. Farrand, The multiplication algebra of a nonassociative algebra. Thesis, U.C.S.D., 1981.

3. S. M. Farrand  and D. R. Finston, The multiplication algebra and multiplication ideal of an algebra

without nilpotent elements, manuscript.

4. D. R. Finston, The algebra of polynomial functions on a nonassociative algebra. Thesis, U.C.S.D., 1983.

5. I. N. Herstein, Noncommutative rings, Carus Math. Monographs, Math. Assoc. Amer., 1968.

6. N. Jacobson. A note on nonassociative algebras, Duke Math. J. 3 (1937), 544-548.

7. G. N. Müller, Nicht associative separable Algebren über Ringen, Abh. Math. Sem. Univ. Hamburg 40

(1974), 115-131.
8. H. Röhrl, On the zeros of polynomials over arbitrary finite dimensional algebras, Manuscripta Math. 25

(1978), 359-390.
9. R. Wisbauer, Radikale von separablen Algebren über Ringen, Math. Z. 139 (1974), 9-13,

Department of Mathematical Sciences, Virginia Commonwealth University, 1015 West Main

Street, Richmond, Virginia 23284


