On multiplication algebras
HTML articles powered by AMS MathViewer
- by David R. Finston
- Trans. Amer. Math. Soc. 293 (1986), 807-818
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816327-2
- PDF | Request permission
Abstract:
The basic properties of multiplication algebras of nonassociative algebras over rings are introduced, including a discussion of multiplication algebras of tensor products of algebras. A characterization of semisimple artinian multiplication algebras is given along with a discussion of the nature of the simple factors of a multiplication algebra modulo its Jacobson radical. A criterion distinguishing the multiplication algebras of certain associative algebras is proved. Examples are included to illustrate certain proved results.References
- A. A. Albert, The radical of a non-associative algebra, Bull. Amer. Math. Soc. 48 (1942), 891–897. MR 7396, DOI 10.1090/S0002-9904-1942-07814-1 Scott M. Farrand, The multiplication algebra of a nonassociative algebra, Thesis, U.C.S.D., 1981. S. M. Farrand and D. R. Finston, The multiplication algebra and multiplication ideal of an algebra without nilpotent elements, manuscript. D. R. Finston, The algebra of polynomial functions on a nonassociative algebra, Thesis, U.C.S.D., 1983.
- I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, vol. 15, Mathematical Association of America, Washington, DC, 1994. Reprint of the 1968 original; With an afterword by Lance W. Small. MR 1449137
- N. Jacobson, A note on non-associative algebras, Duke Math. J. 3 (1937), no. 3, 544–548. MR 1546009, DOI 10.1215/S0012-7094-37-00343-0
- Gerhard Norbert Müller, Nicht assoziative seperable Algebren über Ringen, Abh. Math. Sem. Univ. Hamburg 40 (1974), 115–131 (German). MR 347924, DOI 10.1007/BF02993590
- Helmut Röhrl, On the zeros of polynomials over arbitrary finite-dimensional algebras, Manuscripta Math. 25 (1978), no. 4, 359–390. MR 509591, DOI 10.1007/BF01168049
- Robert Wisbauer, Radikale von separablen Algebren über Ringen, Math. Z. 139 (1974), 9–13 (German). MR 357472, DOI 10.1007/BF01194139
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 807-818
- MSC: Primary 17A99; Secondary 16A99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816327-2
- MathSciNet review: 816327