The distribution of solutions to equations over finite fields
HTML articles powered by AMS MathViewer
- by Todd Cochrane
- Trans. Amer. Math. Soc. 293 (1986), 819-826
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816328-4
- PDF | Request permission
Abstract:
Let ${\mathbb {F}_q}$ be the finite field in $q = {p^f}$ elements, $\underline F (\underline x )$ be a $k$-tuple of polynomials in ${\mathbb {F}_q}[{x_1}, \ldots ,{x_n}]$, $V$ be the set of points in $\mathbb {F}_q^n$ satisfying $\underline F (\underline x ) = \underline 0$ and $S$, $T$ be any subsets of $\mathbb {F}_q^n$. Set $\phi (V,\underline 0 ) = |V| - {q^{n - k}}$, \[ \phi (V,\underline y ) = \sum \limits _{\underline x \in V} {e\left ( {\frac {{2\pi i}} {p}\operatorname {Tr} (\underline x \cdot \underline y )} \right )\quad {\text {for}}\;\underline y \ne \underline 0 ,} \] and $\Phi (V) = {\max _{\underline y }}|\phi (V,\underline y )|$. We use finite Fourier series to show that $(S + T) \cap V$ is nonempty if $|S||T| > {\Phi ^2}(V){q^{2k}}$. In case $q = p$ we deduce from this, for example, that if $C$ is a convex subset of ${\mathbb {R}^n}$ symmetric about a point in ${\mathbb {Z}^n}$, of diameter $< 2p$ (with respect to the sup norm), and $\operatorname {Vol} (C) > {2^{2n}}\Phi (V){p^k}$, then $C$ contains a solution of $\underline F (\underline x ) \equiv \underline 0 (\bmod p)$. We also show that if $B$ is a box of points in $\mathbb {F}_q^n$ not contained in any $(n - 1)$-dimensional subspace and $|B| > 4 \cdot {2^{nf}}\Phi (V){q^k}$, then $B \cap V$ contains $n$ linearly independent points.References
- R. C. Baker, Small solutions of congruences, Mathematika 30 (1983), no. 2, 164–188 (1984). MR 737175, DOI 10.1112/S0025579300010512
- Leonard Carlitz, Weighted quadratic partitions over a finite field, Canad. J. Math. 5 (1953), 317–323. MR 59310, DOI 10.4153/cjm-1953-036-x J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.
- J. H. H. Chalk, The number of solutions of congruences in incomplete residue systems, Canadian J. Math. 15 (1963), 291–296. MR 146130, DOI 10.4153/CJM-1963-032-5
- J. H. H. Chalk, The Vinogradov-Mordell-Tietäväinen inequalities, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), no. 4, 367–374. MR 597995
- J. H. H. Chalk and K. S. Williams, The distribution of solutions of congruences, Mathematika 12 (1965), 176–192. MR 190112, DOI 10.1112/S0025579300005295
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- L. J. Mordell, On the number of solutions in incomplete residue sets of quadratic congruences, Arch. Math. (Basel) 8 (1957), 153–157. MR 91963, DOI 10.1007/BF01899982
- L. J. Mordell, Incomplete exponential sums and incomplete residue systems for congruences, Czechoslovak Math. J. 14(89) (1964), 235–242 (English, with Russian summary). MR 170875
- Gerald Myerson, The distribution of rational points on varieties defined over a finite field, Mathematika 28 (1981), no. 2, 153–159 (1982). MR 645095, DOI 10.1112/S0025579300010202
- R. A. Smith, The distribution of rational points on hypersurfaces defined over a finite field, Mathematika 17 (1970), 328–332. MR 284419, DOI 10.1112/S0025579300002990
- Kenneth W. Spackman, On the number and distribution of simultaneous solutions to diagonal congruences, Canadian J. Math. 33 (1981), no. 2, 421–436. MR 617633, DOI 10.4153/CJM-1981-037-x
- Aimo Tietäväinen, On the solvability of equations in incomplete finite fields, Ann. Univ. Turku. Ser. A I 102 (1967), 13. MR 213334
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 819-826
- MSC: Primary 11T41; Secondary 11D72
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816328-4
- MathSciNet review: 816328