Growth rates and critical exponents of classes of binary combinatorial geometries
HTML articles powered by AMS MathViewer
- by Joseph P. S. Kung
- Trans. Amer. Math. Soc. 293 (1986), 837-859
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816330-2
- PDF | Request permission
Abstract:
We prove that a binary geometry of rank $n\;(n \geqslant 2)$ not containing $M({K_5})$ and ${F_7}$ (respectively, $M({K_5})$ and ${C_{10}}$) as a minor has at most $3n - 3$ (respectively, $4n - 5$) points. Here, $M({K_5})$ is the cycle geometry of the complete graph on five vertices, ${F_7}$ the Fano plane, and ${C_{10}}$ a certain rank $4$ ten-point geometry containing the dual Fano plane $F_7^{\ast }$ as a minor. Our technique is elementary and uses the notion of a bond graph. From these results, we deduce upper bounds on the critical exponents of these geometries.References
- Béla Bollobás, Extremal graph theory, London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 506522
- Tom Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1–44. MR 357163, DOI 10.1090/S0002-9947-1975-0357163-6
- Beniamino Segre, Teorie combinatorie, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976, pp. 7–12. MR 0434827
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
- Gabriel Andrew Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960), 61–85 (German). MR 121311, DOI 10.1002/mana.19600220107
- R. J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10 (1965), 303–318. MR 175809, DOI 10.1016/0022-247X(65)90125-3
- Jack Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147–153. MR 188090
- R. Halin and H. A. Jung, Über Minimalstrukturen von Graphen, insbesondere von $n$-fach zusammenhängenden Graphen, Math. Ann. 152 (1963), 75–94 (German). MR 155315, DOI 10.1007/BF01343731
- F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), no. 2, 205–216. MR 532588, DOI 10.1016/0095-8956(79)90057-1
- W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265–268 (German). MR 220616, DOI 10.1007/BF01364272
- J. Pelikán, Valency conditions for the existence of certain subgraphs, Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York, 1968, pp. 251–258. MR 0234857
- P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), no. 3, 305–359. MR 579077, DOI 10.1016/0095-8956(80)90075-1
- Carsten Thomassen, Some homeomorphism properties of graphs, Math. Nachr. 64 (1974), 119–133. MR 364033, DOI 10.1002/mana.19740640109
- W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88 (1958), 144–174. MR 101526, DOI 10.1090/S0002-9947-1958-0101526-0
- W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552. MR 101527, DOI 10.1090/S0002-9947-1959-0101527-3
- P. N. Walton and D. J. A. Welsh, On the chromatic number of binary matroids, Mathematika 27 (1980), no. 1, 1–9. MR 581990, DOI 10.1112/S0025579300009876
- D. J. A. Welsh, Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0427112 N. L. White (ed.), Combinatorial geometry, Cambridge Univ. Press, Cambridge. 1985.
- Hassler Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), no. 2, 339–362. MR 1501641, DOI 10.1090/S0002-9947-1932-1501641-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 837-859
- MSC: Primary 05B35; Secondary 51D20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816330-2
- MathSciNet review: 816330