Potent axioms
HTML articles powered by AMS MathViewer
- by Matthew Foreman
- Trans. Amer. Math. Soc. 294 (1986), 1-28
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819932-2
- PDF | Request permission
Abstract:
This paper suggests alternatives to the ordinary large cardinal axioms of set theory. These axioms can be viewed as generalizations of large cardinals and exhibit many of the same phenomena. They are shown to imply the G.C.H., every set of reals in $L({\mathbf {R}})$ is Lebesgue measurable, and various results in combinatorics, algebra and model theory.References
- James E. Baumgartner, Generic graph construction, J. Symbolic Logic 49 (1984), no. 1, 234–240. MR 736618, DOI 10.2307/2274106
- James E. Baumgartner and Alan D. Taylor, Saturation properties of ideals in generic extensions. I, Trans. Amer. Math. Soc. 270 (1982), no. 2, 557–574. MR 645330, DOI 10.1090/S0002-9947-1982-0645330-7
- Matthew Foreman, More saturated ideals, Cabal seminar 79–81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 1–27. MR 730584, DOI 10.1007/BFb0071691
- Matthew Foreman, Large cardinals and strong model theoretic transfer properties, Trans. Amer. Math. Soc. 272 (1982), no. 2, 427–463. MR 662045, DOI 10.1090/S0002-9947-1982-0662045-X M. Foreman and R. Laver, A graph transfer property (to appear). M. Foreman and M. Magidor, ${\square _k}$ is consistent with a ${k^ + }$-saturated ideal on $K$ (to appear). —, An ${\aleph _2}$-saturated ideal on ${\aleph _{{\omega _1}}} + 1$.
- Haim Gaifman, Elementary embeddings of models of set-theory and certain subtheories, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 33–101. MR 0376347
- F. Galvin, Chromatic numbers of subgraphs, Period. Math. Hungar. 4 (1973), 117–119. MR 345859, DOI 10.1007/BF02276099
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- T. Jech, M. Magidor, W. Mitchell, and K. Prikry, Precipitous ideals, J. Symbolic Logic 45 (1980), no. 1, 1–8. MR 560220, DOI 10.2307/2273349
- Thomas Jech and Karel Prikry, On ideals of sets and the power set operation, Bull. Amer. Math. Soc. 82 (1976), no. 4, 593–595. MR 505504, DOI 10.1090/S0002-9904-1976-14121-3
- Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179–227. MR 277346, DOI 10.1016/0003-4843(70)90013-6
- Kenneth Kunen, Saturated ideals, J. Symbolic Logic 43 (1978), no. 1, 65–76. MR 495118, DOI 10.2307/2271949 R. Laver, Saturated ideals and non-regular ultrafilters. Proc. Bernays Conference (Patras, Greece, 1980), North-Holland, 1982. M. Magidor, Precipitous ideals and $\Sigma _4^1$-sets.
- A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 491197, DOI 10.1016/0003-4843(77)90006-7
- Jan Mycielski and S. Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fund. Math. 54 (1964), 67–71. MR 161788, DOI 10.4064/fm-54-1-67-71
- Jack Silver, The consistency of the $\textrm {GCH}$ with the existence of a measurable cardinal, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 391–395. MR 0278937 S. Shelah. unpublished.
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955 —, Infinite Abelian groups Whitehead problem and some constructions, Israel J. Math. 13 (1977).
- Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 265151, DOI 10.2307/1970696
- Robert M. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 0290961
- Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73–116. MR 482431, DOI 10.1016/0003-4843(78)90031-1 W. H. Woodin, Discontinuous homomorphisms of $C(X)$ and set theory (to appear). —, An $\aleph$-dense ideal on ${\aleph _1}$ (to appear).
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 1-28
- MSC: Primary 03E65; Secondary 03E15, 03E50, 03E55, 04A30
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819932-2
- MathSciNet review: 819932