Extensions of Verma modules
Author:
Kevin J. Carlin
Journal:
Trans. Amer. Math. Soc. 294 (1986), 29-43
MSC:
Primary 17B10; Secondary 17B20, 22E47
DOI:
https://doi.org/10.1090/S0002-9947-1986-0819933-4
MathSciNet review:
819933
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A spectral sequence is introduced which computes extensions in category in terms of derived functors associated to coherent translation functors.
This is applied to the problem of computing extensions of one Verma module by another when the highest weights are integral and regular. Some results are obtained which are consistent with the Gabber-Joseph conjecture. The main result is that the highest-degree nonzero extension is one-dimensional.
The spectral sequence is also applied to the Kazhdan-Lusztig conjecture and related to the work of Vogan in this area.
- [1] Alexandre Beĭlinson and Joseph Bernstein, Localisation de 𝑔-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- [2]
I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study of
-modules, Lie Groups and their Representations (Ed., I. M. Gelfand), Wiley, New York, 1975, pp. 39-64.
- [3]
-, A category of
-modules, Funct. Anal. Appl. 10 (1976), 87-92.
- [4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- [5] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, https://doi.org/10.1007/BF01389272
- [6] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- [7] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
- [8]
P. Delorme, Extensions dans la catégorie
de Bernstein-Gelfand-Gelfand: Applications, preprint, Palaiscau, 1978.
- [9] Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 435249, https://doi.org/10.1007/BF01390109
- [10] Jacques Dixmier, Algèbres enveloppantes, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). Cahiers Scientifiques, Fasc. XXXVII. MR 0498737
- [11] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302. MR 644519
- [12] Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
- [13] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- [14] David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- [15] Wilfried Schmid, Vanishing theorems for Lie algebra cohomology and the cohomology of discrete subgroups of semisimple Lie groups, Adv. in Math. 41 (1981), no. 1, 78–113. MR 625335, https://doi.org/10.1016/S0001-8708(81)80005-9
- [16] Daya-Nand Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160–166. MR 218417, https://doi.org/10.1090/S0002-9904-1968-11921-4
- [17] Daya-Nand Verma, Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4) 4 (1971), 393–398. MR 291045
- [18] David A. Vogan Jr., Irreducible characters of semisimple Lie groups. I, Duke Math. J. 46 (1979), no. 1, 61–108. MR 523602
- [19] David A. Vogan Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), no. 4, 805–859. MR 552528
- [20] Gregg Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295–308. MR 457636, https://doi.org/10.2307/1971097
Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10, 17B20, 22E47
Retrieve articles in all journals with MSC: 17B10, 17B20, 22E47
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0819933-4
Article copyright:
© Copyright 1986
American Mathematical Society