Clarke’s gradients and epsilon-subgradients in Banach spaces
HTML articles powered by AMS MathViewer
- by Jay S. Treiman
- Trans. Amer. Math. Soc. 294 (1986), 65-78
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819935-8
- PDF | Request permission
Abstract:
A new characterization of Clarke’s normal cone to a closed set in a Banach space is given. The normal cone is characterized in terms of weak-star limits of epsilon normals. A similar characterization of Clarke’s generalized gradients is also presented. Restrictions must be placed on the Banach spaces to make the formulas valid.References
- J. P. Aubin and F. H. Clarke, Shadow prices and duality for a class of optimal control problems, SIAM J. Control Optim. 17 (1979), no. 5, 567–586. MR 540838, DOI 10.1137/0317040 J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach spaces. Part 1: Theory, Canad. J. Math. (to appear).
- Frank H. Clarke, The Erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations, Canadian J. Math. 32 (1980), no. 2, 494–509. MR 571941, DOI 10.4153/CJM-1980-039-9
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- Szymon Dolecki, Tangency and differentiation: some applications of convergence theory, Ann. Mat. Pura Appl. (4) 130 (1982), 223–255. MR 663973, DOI 10.1007/BF01761497
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- T. M. Flett, Differential analysis, Cambridge University Press, Cambridge-New York, 1980. Differentiation, differential equations and differential inequalities. MR 561908, DOI 10.1017/CBO9780511897191
- A. A. Goldstein, Optimization of Lipschitz continuous functions, Math. Programming 13 (1977), no. 1, 14–22. MR 443335, DOI 10.1007/BF01584320
- James Hagler and Francis Sullivan, Smoothness and weak$^{\ast }$ sequential compactness, Proc. Amer. Math. Soc. 78 (1980), no. 4, 497–503. MR 556620, DOI 10.1090/S0002-9939-1980-0556620-4 A. D. Ioffe, Approximate subdifferentials of nonconvex functions, Cahiers Math Decision, no. 8120, Univ. Paris-Dauphine, 1981.
- A. Ja. Kruger and B. Š. Morduhovič, Extremal points and the Euler equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR 24 (1980), no. 8, 684–687, 763 (Russian, with English summary). MR 587714 R. R. Phelps, Differentiability of convex functions on Banach spaces, lecture notes (unpublished), University College, London, 1978.
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- Ralph T. Rockafellar, The theory of subgradients and its applications to problems of optimization, R & E, vol. 1, Heldermann Verlag, Berlin, 1981. Convex and nonconvex functions. MR 623763
- Lionel Thibault, Quelques propriétés des sous-différentiels de fonctions réelles localement lipschitziennes définies sur un espace de Banach séparable, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 10, Ai, A507–A510. MR 428354
- Jay S. Treiman, Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions, Nonlinear Anal. 7 (1983), no. 7, 771–783. MR 707085, DOI 10.1016/0362-546X(83)90033-0 —, A new characterization of Clarke’s tangent cone and its applications to subgradient analysis and optitmization, Ph.D. Thesis, Univ. of Washington, 1983.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 65-78
- MSC: Primary 90C48; Secondary 46G05, 49A52, 58C20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819935-8
- MathSciNet review: 819935