On sieved orthogonal polynomials. III. Orthogonality on several intervals
HTML articles powered by AMS MathViewer
- by Mourad E. H. Ismail
- Trans. Amer. Math. Soc. 294 (1986), 89-111
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819937-1
- PDF | Request permission
Abstract:
We introduce two generalizations of Chebyshev polynomials. The continuous spectrum of either is $\{ x: - 2\sqrt c /(1 + c) \leqslant {T_k}(x) \leqslant 2\sqrt c /(1 + c)\}$, where $c$ is a positive parameter. The weight function of the polynomials of the second kind is ${\{ 1 - ({(1 + c)^2}/4\operatorname {c} )T_k^2(x)\} ^{1/2}}/|{U_{k - 1}}(x)|$ when $c \geqslant 1$. When $c < 1$ we pick up discrete masses located at the zeros of ${U_{k - 1}}(x)$. The weight function of the polynomials of the first kind is also included. Sieved generalizations of the symmetric Pollaczek polynomials and their $q$-analogues are also treated. Their continuous spectra are also the above mentioned set. The $q$-analogues include a sieved version of the Rogers $q$-ultraspherical polynomials and another set of $q$-ultraspherical polynomials discovered by Askey and Ismail. Generating functions and explicit formulas are also derived.References
- N. I. Ahiezer, Orthogonal polynomials on several intervals, Soviet Math. Dokl. 1 (1960), 989–992. MR 0110916
- W. A. Al-Salam and T. S. Chihara, On Reimer recurrences, Portugal. Math. 38 (1979), no. 1-2, 45–58 (1982). MR 682355
- Waleed Al-Salam, W. R. Allaway, and Richard Askey, Sieved ultraspherical polynomials, Trans. Amer. Math. Soc. 284 (1984), no. 1, 39–55. MR 742411, DOI 10.1090/S0002-9947-1984-0742411-6
- Richard A. Askey and Mourad E. H. Ismail, The Rogers $q$-ultraspherical polynomials, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 175–182. MR 602713
- R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 55–78. MR 820210
- Richard Askey and Mourad Ismail, Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer. Math. Soc. 49 (1984), no. 300, iv+108. MR 743545, DOI 10.1090/memo/0300 R. Askey and D. Shukla, Sieved Jacobi polynomials (to appear).
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319
- D. M. Bressoud, On partitions, orthogonal polynomials and the expansion of certain infinite products, Proc. London Math. Soc. (3) 42 (1981), no. 3, 478–500. MR 614731, DOI 10.1112/plms/s3-42.3.478
- Leonard Carlitz, On some polynomials of Tricomi, Boll. Un. Mat. Ital. (3) 13 (1958), 58–64. MR 0103303
- Jairo Charris and Mourad E. H. Ismail, On sieved orthogonal polynomials. II. Random walk polynomials, Canad. J. Math. 38 (1986), no. 2, 397–415. MR 833576, DOI 10.4153/CJM-1986-020-x
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884 Ya. L. Geronimus, Orthogonal polynomials, Fitzmatgiz, Moscow, 1961, Appendix, pp. 414-494: English transl., Amer. Math. Soc. Transl. Series 2 (1977), 37-130.
- Mourad E. H. Ismail, On sieved orthogonal polynomials. I. Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), no. 5, 1093–1113. MR 800799, DOI 10.1137/0516081
- Paul G. Nevai, On orthogonal polynomials, J. Approx. Theory 25 (1979), no. 1, 34–37. MR 526275, DOI 10.1016/0021-9045(79)90031-5
- Mourad E. H. Ismail and James A. Wilson, Asymptotic and generating relations for the $q$-Jacobi and $_{4}\varphi _{3}$ polynomials, J. Approx. Theory 36 (1982), no. 1, 43–54. MR 673855, DOI 10.1016/0021-9045(82)90069-7
- S. Karlin and J. L. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489–546. MR 91566, DOI 10.1090/S0002-9947-1957-0091566-1
- Samuel Karlin and James McGregor, Many server queueing processes with Poisson input and exponential service times, Pacific J. Math. 8 (1958), 87–118. MR 97132, DOI 10.2140/pjm.1958.8.87
- Samuel Karlin and James McGregor, Random walks, Illinois J. Math. 3 (1959), 66–81. MR 100927
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985, DOI 10.1016/0021-9045(84)90036-4
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- Félix Pollaczek, Sur une généralisation des polynomes de Legendre, C. R. Acad. Sci. Paris 228 (1949), 1363–1365 (French). MR 30037
- Earl D. Rainville, Special functions, 1st ed., Chelsea Publishing Co., Bronx, N.Y., 1971. MR 0393590 J. B. Selliah, A system of orthogonal polynomials, Tech. Report #13, Appl. Math. and Stat. Lab, Stanford University, Stanford, Calif. 1962.
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- G. Szegö, On certain special sets of orthogonal polynomials, Proc. Amer. Math. Soc. 1 (1950), 731–737. MR 42546, DOI 10.1090/S0002-9939-1950-0042546-2 —, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 89-111
- MSC: Primary 33A65
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819937-1
- MathSciNet review: 819937