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JOINT SPECTRA AND ANALYTIC
SET-VALUED FUNCTIONS

BY

M. KLIMEK

ABSTRACT. We investigate analyticity of joint spectra of Am-valued holo-

morphic mappings, where A denotes a complex Banach algebra. We show also

that if K is an analytic set-valued function whose values are compact subsets

of Cn and d is the transfinite diameter in Cn, then the upper-semicontinuous

regularization of logd(X) is plurisubharmonic. Moreover, we give higher di-

mensional extensions of Aupetit's Scarcity Theorem.

1. Introduction. Analytic functions whose values are compact subsets of the

plane were introduced by Oka [9] in 1934. He defined them by means of pseudo-

concavity. Afterwards they were practically forgotten for nearly fifty years. In 1980,

Slodkowski [15] proposed a different definition of analytic set-valued functions using

plurisubharmonic functions. This new definition was equivalent to the old one in the

case of functions with values contained in C and was suitable for higher dimensions.

Moreover it was much more flexible. The publication of [15] seems to have been the

turning point in the history of analytic set-valued (or multivalued) functions. In the

1980's numerous articles dealing with this topic have already appeared. They were

written by various authors including Alexander, Aupetit, Ransford, Slodkowski,

Vesentini, Wermer, Zemanek and Zraibi. Ransford's dissertation [10] is an excellent

survey article that also contains plenty of new results.

Analytic set-valued functions are very useful in spectral theory. A deep result

proved in [15] says that if / is a holomorphic function with values in a Banach

algebra, then the spectrum of f(z) is an analytic set-valued function with respect

to z. (Moreover every analytic set-valued function with values contained in C is

locally of this form (see [15] for details).)
In our first theorem we prove a similar property for joint spectra. Let A be

a complex Banach algebra with unit e. Following Harte [4] we define for a =

(ai,..., am) G Am the left joint spectrum of a,

a\(a) = ¡zGCm: e(¿Y Aia3 ~ z3e)

the right joint spectrum of o,

<TAi(a)={zeCm:e$Yi(aj-zje)A\,
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188 M. KLIMEK

and the joint spectrum of a,

aA(a) = aLA(a)\JoAî(a).

Throughout the paper " will denote the polynomially convex hull.

THEOREM 1. Let fi be an open subset of Cn and let A be a complex Banach

algebra with unit. Let f = (/i,..., fm) : fi —> Am be a holomorphic mapping such

that {fi(z),..., fm(z)} is a commuting system of elements for each z G fi. Then

z —> èA(f(z)) is an analytic set-valued function on fi. Furthermore, if A is com-

mutative, then z —> oA(f(z)) is analytic.

This theorem together with the maximum principle for analytic set-valued func-

tions (see e.g. [10]) implies the maximum principle for the polynomially convex

hulls of joint spectra proved by Vesentini [18, Theorem I].

Yamaguchi [20] has proved that if 2r —>■ K(z) is an analytic set-valued func-

tion with values in CompC, then z —> logc(.fiT(2)) is plurisubharmonic (where

c =logarithmic capacity=Fekete's transfinite diameter). In the next theorem we

show that this result can be generalized for analytic functions with values in

Comp Cm provided that Fekete's transfinite diameter is replaced by the Cm-trans-

finite diameter (for m = 1 they coincide). It should be noted that Yamaguchi's

theorem can also be extended in a different direction (see [18]).

We shall prove the following

THEOREM 2. Let fi C C™ be open and let K: fi -> CompC7" be an ana-

lytic set-valued function. If d is the transfinite diameter in Cm, then the function

u: fi —► [-00,00) defined by the formula u(z) = (logd(K(z)))* is plurisubharmonic

(* stands for the upper semicontinuous regularization). Moreover if'fi is connected,

then either K(z) is pluripolar for all z or the set {z G fi: K(z) is pluripolar} is

itself pluripolar.

Aupetit [1, 2] has proved the so-called 'Scarcity Theorem' that gives a classifi-

cation of analytic functions of one variable whose values are finite subsets of the

complex plane (see also [10, Theorem 3.11]). The next two results are higher di-

mensional extensions of Aupetit's result. Before formulating our theorems, recall

that a set K C Cm is said to be unisolvent for polynomials of degree k if the fol-

lowing implication is true: If /: Cm —> C is a polynomial of degree < k and / = 0

on if, then / = 0 in Cn.

THEOREM 3. Let fi be an open connected subset of Cn and let K : fi —>

CompCm be an analytic set-valued function. Define ordÄ~(z) = sup{fc > 0: K(z)

is unisolvent for polynomials of degree k} for z GVl.

Then either {z G fi: ord K(z) < 00} is pluripolar or there exists a positive integer

p and a pluripolar subset F of fi such that for every z G fi \ F, ord K(z) = p and

for every z G F, ordÄ"(2) < p.

THEOREM 4. Let fi and K be as in Theorem 3. Then either {z e fi: #K(z) <

00} is pluripolar or there is a positive integer p and an o.nalytic subvariety F of

fi such that for each z G fi \ F, #K(z) = p and for each z G F, #K(z) < p.
In the latter case there exists a holomorphic mapping H: fi x Cm —> C( (where

t = (m — l)p + 1) such that w G K(z) if and only if H(z, w) = 0.



JOINT SPECTRA AND ANALYTIC SET-VALUED FUNCTIONS 189

It should be emphasized that even for m = 1 the functions z —► crA(f(z)) and

z —> oA(f(z)) may not be analytic (see [10, p. 83]). In spite of this, Theorems 2,

3 and 4 are true for z —► oA(f(z)), z -> oA(f(z)) and z —> oA(f(z)) provided that

/ satisfies the assumptions of Theorem 1. The reason for this is quite simple: For

any compact subset K of Cm, d(K) = d(K) (see [21]), ord if = ordif and, if K is

finite, K = if.

The author wishes to thank Sean Dineen for conversations.

2. Set-valued mappings. Let X and Y be topological spaces. A mapping F

that assigns to each point x of X a closed subset F(x) of Y is said to be upper (lower)

semicontinuous if for every open (closed) set S C Y the set {x G X: F(x) C 5}

is open (closed). In particular a function u: X —> [—oo,+oo] is upper (lower)

semicontinuous in the usual sense if and only if the mapping Fu defined by Fu(x) =

[—oo, u(x)] is upper (lower) semicontinuous in the sense of the above definition (for

more details see [5, 6, 3]). Let Comp Y denote the space of all nonempty compact

subsets of Y. If Y is a metric space, one can define the Hausdorff metric on Comp Y

by the formula

p(A, B) — max I sup dist(a, B), sup dist(b, A) >
(aeA b€B )

for A,B G Comp Y. The pair (Comp Y, p) is a metric space and a mapping K : X —>

Comp Y is continuous if and only if it is both upper and lower semicontinuous.

Let fi be an open subset of Cn. A mapping if: fi —> CompCm is said to be

analytic set-valued (ASV) if it is upper semicontinuous and the following condition

is satisfied:

(ASV)       For each open subset fii of fi and for each plurisubharmonic

function u defined on an open neighbourhood of the set

{(z, w) G fii X Cm : w G K(z)} the function v : fii -> [-oo, +co)

is plurisubharmonic, where

v(z) = sup{u(z,w): w € K(z)}    for z G fii.

It is clear that (ASV) is a local property.

EXAMPLE 2.1 (RANSFORD [10]). Let u: fi -> [-oo, +oo) be an upper semicon-

tinuous function on an open set fi C Cn. Define K(z) = {w G C : |w\ < exp(u(z))}.

Then K is ASV if and only if u is plurisubharmonic.

EXAMPLE 2.2 (RANSFORD [10]). Let /: fi -> Cm be a function on an open set

fi C C". Then K(z) = {/(*)}, z G fi, is ASV if and only if / is holomorphic.

The following generalization of the last example is due to Ransford [10] and

Zraibi [22].

THEOREM 2.3. Let fi C C" be connected and if : fi -> Comp Cm be an an-

alytic set-valued function. If U and V are disjoint open sets in Cm such that

K(z) CUUV for all z eU, then either K(z)nU = 0 for all z G fi or K(z)C\U ¿ 0
for all z 6 fi. In the latter case z —> if (z) fl U is an analytic set-valued function.

The next result is due to Slodkowski [15].
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THEOREM 2.4. (a) If K and L are analytic set-valued functions such that the

values of K are contained in the domain of L, then LoK is an analytic set-valued

function where L o K(z) = \J{L(w) : w G K (z)} for any z in the domain of if.

(b) If K and L are analytic set-valued functions defined on the same open set

fi, then K x L is an analtyic set-valued function, where (if x L)(z) = if (z) x L(z),

z G fi.

3. Transfinite diameter in Cn. Let x: N —> Z" be a bijection such that

\x(j)\ < \x(j + 1)| for j > 1, where \a\ = etf + a2 + ■ ■ ■ + an for any multi-index

a = (cti,... ,an) e Z" . Define pj = \x(l)\ + \x(2)\ -\-h |x(mj)|, where m,j is the

number of monomials in C" of degree < j. Clearly m-j = (n+J). Notice that pj

does not depend on our choice of x.

Let fi,...,£m be points in Cn. Define ej(t¡) = £x(j) for all t¡ G C" and

V^(^i,..., £m) = det[e¿(^)]i<¿i;)<n. For a compact set if C C™ define

Vm(K) = anp{\V(c:1,...,U)\-{iu---,U}cK}.

We call the number

d(if) = limsup(Kmj(if))1^

the transfinite diameter of if. In the one-dimensional case d coincides with Fekete's

transfinite diameter. Answering a question asked by Siciak in [12] (see also [7]),

Zaharjuta [21] has shown that for any compact set in C" the sequence (Vm ■ (if ))l^Pi

converges as j —> oo and hence "lim sup" in the definition of d(if ) can be replaced

by "lim". The transfinite diameter can also be characterized in terms of Tchebysheff

constants (see [21]).

We will need the following lemma.

LEMMA 3.1. Let fi be an open set in Cn and let K: fi —> CompCm be an

upper semicontinuous mapping. Define u(z) = logd(K(z)), z G fi. Then u is

locally bounded from above andu*(z) = —oo if and only if K(z) is pluripolar.

PROOF. Fix z$ G fi. It is clear that if A > 0 and E is a compact set in C,n,

then d(XE) — Xmd(E). Hence we may assume without loss of generality that if (zq)

is contained in the open unit ball B C Cm. Upper semicontinuity of if implies

that there exists a neighborhood U of zn such that for each z G U, K(z) C B.

Consequently u < 0 in U.

For any compact set E C B define

T(£) = (sup{<Mz): ||z|| = l})-\

where $# is the Siciak extremal function (see e.g. [12, 13]), that is

$£(z) = sup{|p(z)|1/de^},

where the supremum is taken over all polynomials p such that |p| < 1 on E and

degp > 1. It can be shown that

(a) T(E) = 0 if and only if E is pluripolar (see [13]).

(b) If Ef D E2 D E3 D ■ ■ ■ is a sequence of compact sets, then

rm^-J = limoT(Ej)       (see [13]).
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(c) There are positive constants A and 8 such that for any compact set E con-

tained in B, n~^2T(E) < d(E) < AT(E)6 (see [8]).

The properties (b) and (c) imply that if d(K(z)) = 0, u*(z) = u(z) = -co.

Combining this with (a) and (c) we obtain the lemma.

In the proof of Theorem 3 we will use the following characterization of unisolvent

sets (see [12]).

LEMMA 3.2. For every compact set if C Cn the following conditions are

equivalent:

(a) if is unisolvent for polynomials of degree < j.

(b)Vi{K)¿0fori = l,2,..., m }■

(c)Vmi(K)¿0.

4.  Approximation lemmata for plurisubharmonic functions. Let fi be

an open subset of C™. By PSH(fi) we will denote the family of all plurisubharmonic

functions on fi (including — oo) and by P(Cn) the family of all polynomials of n

complex variables.

Define PSHn(fi) as the family of all functions u G PSH(fi) which can be written

in the form u — sup{a/Log|/|: / G 7} for some 7 C P(Cn) and (a/)/£/ C {t G

R: t > 0}. In view of the following lemma we may restrict ourselves to countable

families 7 in the definition of PSHo

LEMMA 4.1. If 7 C C(fi, R), then there is a countable family 7q C 7 such that
for all z GÜ

sup{/(z):/e7} = sup{/(z):/ej0}-

PROOF. We have

\(z,t) SfixR: sup/(z) >il= I   \{(z,t) efixR: f(z) > t}.

{ ^ J     f¿F

All sets that appear in the equality are open, so in view of the Lindelöf property

there exists a countable family 7o C 7 such that

{ (z,t) en x R:  sup f(z) > t \ =   M {(z,t) eOxR: f(z) > t}

which proves the lemma.

Lemma 4.2 (see [13, Theorem 2.13]). Let g g PSH(C") suchthat

(*) sup{ff(z)-log(l+||z||)}<+oo.
zee»

Then there is a locally bounded from above sequence {gm}m>i C C°° D PSHo(C")

such that g(z) = linim^oo gm(z), z G Cn.

LEMMA 4.3. Let Pq and Pf be closed polynomial polyhedra in Cn such that

Pq C intPi. If u G L°° DPSH(intPi), then there is a sequence {um}m>f C

PSHo(intPo) which is locally bounded from above and such that

u(z) =   lim  um(z),        zeintPfj.
m—»oo

PROOF. Take fu..., fk e P(Cn) such that

Pi = {*ecw: |/,-(*)| <i,y = i,...,fc}.
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We can choose 9 G (0,1) such that P0 C int Pg where P8 = {z G Cn: \fj(z)\ < 9,

j = 1,..., k}. Clearly it is enough to show the lemma for Pg instead of Pç>. There

are positive numbers A and B such that v = A(u - B) <0 on Pf and dv > log 9 on

Pe where d = max{deg/i,... ,deg/n}. Define w(z) = max{(l/d)log|/j(z)|: j =

1,... ,k} and
, s      ( max{t'(z),u;(z)},    z eint Pi,

yy '     \w(z), zeC"\intPi.

Then g G PSH(C") satisfies (*). Moreover g = v on Pe- Let {gm} be the sequence

from Lemma 2 and let gm — supy6?-m{a/log ]/]}, where 7m C P(Cn) and a¡ > 0

for each f G 7m. Define

Ctf
um = sup -j- log

feJm A

By Lemma 2 u = lim um on Pg.

LEMMA 4.4. Let (um)m>f be a locally bounded from above sequence in PSH(fi)

such that u — limsupm^00um e PSH(fi). //if is a compact subset of fi, then

sup u(K) = limsupm^0o(supum(if)).

PROOF. Since u is upper semicontinuous there exists z e if such that

supu(if) = u(z) — lim sup um(z) < limsup(supum(if)).
m—>oo m—>oo

The opposite inequality follows from Hartogs' Lemma (see e.g. [19, p. 76]). (If

e > 0, the set {u < supii(if) + e/2} is open and contains if, so—in view of Hartogs'

Lemma—there exists Jq such that for all j > jo we have sup Uj(K) < sup u(K)+e.)

5. Joint spectra and ASV functions. In this section we shall prove Theorem

1. First of all notice that the second conclusion of the theorem is quite easy to verify.

For if A is commutative, then

o~A (o-i, ■ ■ ■, am ) = aA (af,..., am ) = oA (a\,..., am )

= {(<b(ai),...,<b(am)): <pG M},

where At is the maximal ideal space of A.

Let fi! be an open subset of fi and let u be a plurisubharmonic function on an

open neighbourhood of the set {(z, w) G fii x Cm: w G oA(f(z))}. Then

v(z) = sup{u(z, w) : w e oA(f(z))}

= sup{u(z, <p(fi(z)),..., 4>(fm(z))) : (p e At}.

The mapping z —» (z, <p(fi(z)),..., 4>(fm(z))) is holomorphic, hence v is the supre-

mum of a family of plurisubharmonic functions. Furthermore, as oA : Am —>

CompCm is continuous (see e.g. [11]) the function v is upper semicontinuous and

hence plurisubharmonic.

The noncommutative case has to be dealt with separately. If we prove the

first statement of Theorem 1 for the joint left spectrum, the result will follow

because oA = oLA U oA and oA = oL~, where A is obtained from A by 'reversing'

multiplication (i.e. by defining a new product of two elements a and b as 6a). Let

Bm = {a G Am : oA(a) ^ 0}. By modifying the proof of Newburgh's Theorem (see

e.g. [11]) we show the following (see also [4, p. 93]).

/exp
AB

at
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LEMMA 5.1. For each positive integer m the mapping oA : Bm —> Comp Cm is

upper semicontinuous.

PROOF. Suppose the lemma is false. There exist a neighbourhood V of 0 in

Cm, a point x = (xi,... ,xm) e Bm and sequences {a„} C Bm and {zn} C Cm

such that \\an - x\\ < 1/n, zn G oA(an) \ (aA(x) + V) and ||an|| < ||x|| + 1/n. Since

a^(x) C «7,4(11) x ••• x<7^(xm) and (yi,...,ym) -» cr(yi) x ••• x o(ym) is upper

semicontinuous by Newburgh's Theorem, the sequence {z„} is bounded. Passing to

a subsequence, if necessary, we may assume that {z^} is convergent. Let £ = lim-z,,.

Clearly £ £ (o~A(x) + V). Hence £ ^ o~A(x). Consequently there are j/i,..., ym G A

such that
n

e = 5Zyi(a^ -£¿e),
i=i

where £ = (£i,...,£m).  Let an = (ani,... ,onm) and zn = (z„i,... ,znm).  The

set of invertible elements of A is open, so replacing (x¿ - £¿e) by (an¿ - zn¿e) (for

large n) we get an invertible element J2^Li yi(ani — znie) which is impossible as

zn e crA(an).

LEMMA 5.2.   Let A be a Banach algebra with unit and let Sm = {x G Am:

aAÍs(x)) = g(oA(x)) for all polynomials g of n complex variables}.

Let fi be an open subset of Cn and let f : fi —+ Sm be holomorphic. If P is a

closed polynomial polyhedron in Cn such that oA(f(z)) C intP for all z G fi and

u G PSH(int P), then the function

v(z) =sup{tt(u;): wGoIA(f(z)))

is plurisubharmonic in fi. (Note that Sm C Bm.)

PROOF. Fix zn e fi. The polynomially convex hull of oA(f(zo)) is a compact

subset of int P. Take closed polynomial polyhedra Pq and Pi such that

cta(/(zo)) C int P0 C P0 C int Px C Pi C int P.

By Lemma 5.1 there is a neighbourhood W of zn such that o~A(f(z)) C int Pn. for

all z e W. Moreover, upper semicontinuity of u implies that u is upper bounded

on Pi. By Lemma 4.4 and the fact that u = limJ^00max(u, —j) we may assume

that u G L°°(Pf). Lemmata 4.1, 4.3 and 4.4 imply that it is enough to consider u

of the form u = alog \g\, where a > 0 and g G P(Cm). Note that the values of /

lie in Sm. Thus by Vesentini's Theorem [16, 17] the function z —» r(h(z)) (where

r denotes the spectral radius and h = g o f) is logarithmically plurisubharmonic.

Hence v G PSU(W).

PROOF OF THEOREM l. Let fii be an open subset of fi and let G be an open

set in Cn x Cm such that

{z} x âji(f(z)) C G   for all ze fii.

Suppose u G PSH(G). If g(zi,..., z„) = (z\t,..., z^e), then

{z}x^(/(z))=c7^(g(z),/(z)) =fa(z)

and

{z}xàLA(f(z)) = s(z).
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Fix zo e fii. Take a closed polynomial polyhedron P G G such that s(zr¡) C int P.

By Lemma 5.1 there is a neighbourhood W of zq such that for each z e W, s(z) C

intP and hence s(z) C int P. Define

v(z) = sup{tt(z, tu) : tu e âA(f(z))},        z G fii.

Then

v(z)-sup{u(t): t G s(z)},        z e fii.

But intP is a Runge domain, so s(z) coincides with the PSH(int P)-hull of s(z) for

each z e W. Therefore for z e W we have

v(z) = sup{u(í) : t G s(z)}.

According to Harte's Spectral Mapping Theorem (see [4, pp. 105-106]) if x e Am

is a commuting system of elements, then x G Sm. Thus Lemma 5.2 implies that

v G PSH(W). Since plurisubharmonicity is a local property, the above shows that

uePSH(fii).

6. Pluripolar sets and ASV functions. In this section we prove Theorems

2, 3 and 4.

PROOF OF THEOREM 2. Observe that

logd(if(z)) = lim aup(l/Pi) log V™,. (#(*))
j—»OO

= limsupsup{(l/pJ)log|K(£)|: £ G [K(z)]m>}
¿-►oo

= limsupuj(z).
j—*oo

From Theorem 2.4(b) and the definition of ASV-functions it follows that Uj G

PSH(fi). Therefore our theorem follows from Lemma 3.1.

PROOF OF THEOREM 3. Suppose that the set A - {z G fi: ordif(z) < +00}

is not pluripolar. As in the proof of the previous theorem we can show that the

function Uj(z) = logVmj(if(z)), z e fi, is plurisubharmonic. Lemma 3.2 implies

that A — (jj{z G fi: Uj(z) = -co}. Countable unions of pluripolar sets are

pluripolar, and hence there is an integer po such that Up0 = —00. By Lemma 3.2

we have Uk = —00 for all k > po- Hence po can be chosen so that up ^ —00,

where p = po — 1. Define F = {z e fi: up(z) = —00}. Obviously p and F have the

required properties.

PROOF OF THEOREM 4. As in the definition of Fekete's transfinite diameter

we may define for any compact set if C Cm

6j(K) = sup I J] 11%. - z9f/0_1)i: zi,..., zj G K 1
\p<q >

for j = 1,2,.... Exactly as in the one-dimensional case it follows from Theorem 2.4

that z —> log ¿j (if (z)) is plurisubharmonic. Using the same reasoning as for m = 1

(see [1, p. 66, Theorem 1; 2; 10, Theorem 3.11]) we can prove that either {z e

fi: #K(z) < 00} is pluripolar or there is a positive integer p such that #if(z) < p

for all z e fi. Let us take the smallest p which has this property. By Theorem 2.3

(see also [10, Corollary 3.10]) if is continuous and hence F = {z e fi: #if(z) < p}
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is a closed subset of fi. We have to show that F is an analytic subset of fi and we

have to construct the function H.

Let a: Cm -»Cbea C-linear mapping. For z e fi \ F define

fa(z) = Y\a(vz(z) - v^z)),

where if(z) = {v\(z),..., vp(z)}. If z e F, let fa(z) = 0. Since if is continuous,

the function fa is continuous at every point of F. Moreover, in view of Theorem

2.3 (and Example 2.2) for each zq G fi\P there exists a neighbourhood W of Zq and

holomorphic functions Vf,v2,...,vp: W —> C such that if (z) = {vf(z),...,vp(z)}

for all z e W. Hence fa is holomorphic on fi \ F. Rado's Theorem implies that fa

is holomorphic on fi.

Let us take a system of linear functionals ai,a2,...,ar on Cm such that each

subsystem of m elements forms a linearly independent set and

r = \(m- l)p(p - 1) + 1.

We claim that

F=p|{zefi:/Q,(z)=0}.

3 = 1

There are only \p(p — 1) distinct pairs (i,j) such that 1 < i < j < p. Suppose

z e fi \ F and fai(z) = • • • = far(z) = 0. Then there exists a pair (i,j) and m

distinct values of k for which otk(vi(z) — Vj(z)) = 0. Hence v¿(z) = v3(z). This

contradicts our assumption that z ^ F. Therefore fai(z) — ■ ■ ■ — far(z) = 0 if and

only if z e F.
In a similar way we may prove the existence of H. For z e fi \ F and w G Cm

define
p

hk(z,w) = Ylßk(w~Vj(z)),
3 = 1

where k = 1,2, ...,(m — l)p + 1 and the ßk's are C-linear functionals on Cm

chosen so that every set of m of these functionals is linearly independent. Theorem

2.3 implies analyticity of hk on (fi \ F) x Cm. As a consequence of Riemann's

extension theorem, for each hk there is a holomorphic function Hk : fi x Cm —> C

that coincides with hk on (fi \ F) x Cm. Clearly if z G fi \ F, then w G if (z) if

and only if Hk(z, w) — 0 for all k — 1,2,..., (m - l)p + 1. Indeed, there are only

p distinct points in if (z). So, if Hk(z, w) = 0 for k = 1,2,..., (m - l)p + 1, then

there exists a point wn G K(z) and m distinct values of k for which ßk(w — wo) = 0.

Hence tu = tun.

Now assume that zn e F. We may proceed as in [10, p. 40]. Take a sequence

{zj} C fi \ F such that Zj —> zn. Then H(zq,wq) = 0 if and only if there exists a

sequence tu, —> tun with Wj G K(zj). This, in turn, is equivalent to the fact that

wq G if (zo), since if is continuous.
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