Joint spectra and analytic set-valued functions
HTML articles powered by AMS MathViewer
- by M. Klimek
- Trans. Amer. Math. Soc. 294 (1986), 187-196
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819942-5
- PDF | Request permission
Abstract:
We investigate analyticity of joint spectra of ${A^m}$-valued holomorphic mappings, where $A$ denotes a complex Banach algebra. We show also that if $K$ is an analytic set-valued function whose values are compact subsets of ${{\mathbf {C}}^n}$ and $d$ is the transfinite diameter in ${{\mathbf {C}}^n}$, then the upper-semicontinuous regularization of $\log d(K)$ is plurisubharmonic. Moreover, we give higher dimensional extensions of Aupetit’s Scarcity Theorem.References
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769
- Bernard Aupetit, Analytic multivalued functions in Banach algebras and uniform algebras, Adv. in Math. 44 (1982), no. 1, 18–60. MR 654547, DOI 10.1016/0001-8708(82)90064-0
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89–107. MR 326394 K. Kuratowski, Les fonctions semi-continues dans l’espace des ensembles fermés, Fund. Math. 18 (1932), 148-159.
- Kazimierz Kuratowski, Operations on semi-continuous set-valued mappings, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 449–461. MR 0188995
- J. Górski, Une remarque sur la méthode des points extrémaux de F. Leja, Ann. Polon. Math. 7 (1959), 63–69 (French). MR 116154, DOI 10.4064/ap-7-1-63-69 N. Levenberg and B. A. Taylor, Comparison of capacities in ${{\mathbf {C}}^n}$, preprint, 1983. K. Oka, Note sur les familles des fonctions analytiques multiformes etc., J. Sci. Hiroshima Univ. 4 (1934), 93-98. T. J. Ransford, Analytic multivalued functions, Dept. of Math., Univ. of Cambridge, Cambridge, 1983.
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Józef Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357. MR 143946, DOI 10.1090/S0002-9947-1962-0143946-5 —, Extremal plurisubharmonic functions and capacities in ${{\mathbf {C}}^n}$, Sophia Kokyuroku in Mathematics 14, Sophia University, Tokyo, 1982.
- Zbigniew Słodkowski, On subharmonicity of the capacity of the spectrum, Proc. Amer. Math. Soc. 81 (1981), no. 2, 243–249. MR 593466, DOI 10.1090/S0002-9939-1981-0593466-6
- Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, DOI 10.1007/BF01679703
- Edoardo Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. (4) 1 (1968), 427–429 (English, with Italian summary). MR 0244766
- Edoardo Vesentini, Maximum theorems for spectra, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 111–117. MR 0271731
- Edoardo Vesentini, Carathéodory distances and Banach algebras, Adv. in Math. 47 (1983), no. 1, 50–73. MR 689764, DOI 10.1016/0001-8708(83)90054-3 V. S. Valdimirov, Methods of the theory of functions of several complex variables, The MIT Press, Cambridge, Mass, and London, 1966.
- Hiroshi Yamaguchi, Sur une uniformité des surfaces constantes d’une fonction entière de deux variables complexes, J. Math. Kyoto Univ. 13 (1973), 417–433 (French). MR 338424, DOI 10.1215/kjm/1250523318 V. Zaharjuta, Transfinite diameter, Čebysev constants and capacity for compact a in ${{\mathbf {C}}^n}$, Math. USSR Sb. 25 (1975), 350-364. A. Zraibi, Sur les fonctions analytiques multiformes, Thesis, Université Laval, Quebec, 1983.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 187-196
- MSC: Primary 46H30; Secondary 32F15, 47A10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819942-5
- MathSciNet review: 819942