Properties of relatively free inverse semigroups
HTML articles powered by AMS MathViewer
- by N. R. Reilly and P. G. Trotter
- Trans. Amer. Math. Soc. 294 (1986), 243-262
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819946-2
- PDF | Request permission
Abstract:
The objective of this paper is to study structural properties of relatively free inverse semigroups in varieties of inverse semigroups. It is shown, for example, that if $S$ is combinatorial (i.e., $\mathcal {H}$ is trivial), completely semisimple (i.e., every principal factor is a Brandt semigroup or, equivalently, $S$ does not contain a copy of the bicyclic semigroup) or $E$-unitary (i.e., $E(S)$ is the kernel of the minimum group congruence) then the relatively free inverse semigroup $F{\mathcal {V}_X}$ on the set $X$ in the variety $\mathcal {V}$ generated by $S$ is also combinatorial, completely semisimple or $E$-unitary, respectively. If $S$ is a fundamental (i.e., the only congruence contained in $\mathcal {H}$ is the identity congruence) and $|X| \geqslant {\aleph _0}$, then $F{\mathcal {V}_X}$ is also fundamental. $F{\mathcal {V}_X}$ may not be fundamental if $|X| < {\aleph _0}$. It is also shown that for any variety of groups $\mathcal {U}$ and for $|X| \geqslant {\aleph _0}$, there exists a variety of inverse semigroups $\mathcal {V}$ which is minimal with respect to the properties (i) $F{\mathcal {V}_X}$ is fundamental and (ii) $\mathcal {V} \cap \mathcal {G} = \mathcal {U}$, where $\mathcal {G}$ is the variety of groups. In the main result of the paper it is shown that there exists a variety $\mathcal {V}$ for which $F{\mathcal {V}_X}$ is not completely semisimple, thereby refuting a long standing conjecture.References
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- L. M. Gluskīn, Inverse semigroups, Zap. Meh.-Mat. Fak. i Har′kov. Mat. Obšč. (4) 28 (1961), 103–110 (Russian). MR 0249533
- J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs, No. 7, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0466355
- Francis Pastijn, Inverse semigroup varieties generated by $E$-unitary inverse semigroups, Semigroup Forum 24 (1982), no. 1, 87–88. MR 645707, DOI 10.1007/BF02572759
- F. J. Pastijn and P. G. Trotter, Lattices of completely regular semigroup varieties, Pacific J. Math. 119 (1985), no. 1, 191–214. MR 797024
- Mario Petrich, Inverse semigroups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 752899
- Mario Petrich and Norman R. Reilly, $E$-unitary covers and varieties of inverse semigroups, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 59–72. MR 739023
- N. R. Reilly, Free generators in free inverse semigroups, Bull. Austral. Math. Soc. 7 (1972), 407–424. MR 315024, DOI 10.1017/S0004972700045251
- N. R. Reilly, Varieties of completely semisimple inverse semigroups, J. Algebra 65 (1980), no. 2, 427–444. MR 585734, DOI 10.1016/0021-8693(80)90231-8
- N. R. Reilly, Free inverse semigroups, Algebraic theory of semigroups (Proc. Sixth Algebraic Conf., Szeged, 1976) Colloq. Math. Soc. János Bolyai, vol. 20, North-Holland, Amsterdam-New York, 1979, pp. 479–508. MR 541134 —, Minimal non-cryptic varieties of inverse semigroups, Quart. J. Math. Oxford (2) (to appear).
- H. E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc. 38 (1973), 1–7. MR 310093, DOI 10.1090/S0002-9939-1973-0310093-1
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 243-262
- MSC: Primary 20M07; Secondary 20M05, 20M18
- DOI: https://doi.org/10.1090/S0002-9947-1986-0819946-2
- MathSciNet review: 819946