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BOUNDARY UNIQUENESS THEOREMS IN Cn

BY

JOSEPH A. CIMA AND EMIL J. STRAUBE1

ABSTRACT. Let n-dimensional manifolds Tjt, fc = 1,2,..., be given in a

smoothly bounded domain Q C Cn. Assume that the Tk "converge" to an

n-dimensional, totally real manifold T Ç dQ and that a function / analytic in

O has the property that its traces fk on rk have distributional limit zero as

fc —► oo (or assume that fk—*0 pointwise). Then under the assumption that

/ is polynomially bounded near PgTby (dist(2,dQ))_1 we conclude that /

is identically zero.

1. Introduction. In this note we present boundary type uniqueness theo-

rems for analytic functions of several complex variables. Consider n-dimensional

manifolds Fk, k G N, which "converge" to an n-dimensional, totally real manifold

T C bfi, the boundary of a C°°-smooth, bounded domain U C Cn. (This conver-

gence is only assumed to take place near a point P G I.) Assume that the function

/, analytic in U, has the property that its traces fk on Tk have distributional limit

0 as k —> oo, or that /fc —» 0 pointwise (see §2 for precise definitions). If / is poly-

nomially bounded (near P) by l/dist(2,bfi), then this implies that / is identically

0. This is the content of Theorem 2.2 and its Corollary 2.3. Theorem 2.2 is a

consequence of results obtained in [13 and 14]. Note that the set of polynomially

bounded analytic functions on a bounded domain U contains the classical Hardy

and Bergman spaces and all partial derivatives of such functions. Also observe that

there is no restriction concerning tangential (with respect to bfi) approach of the

Tfc; osculation to arbitrary high order is possible (for n > 1). Examples 2.4 and

2.5 illustrate the role played by the hypotheses in Theorem 2.2 and Corollary 2.3,

respectively.

If one knows that / omits a (finite) value, the growth condition can be relaxed.

This yields a result (Corollary 2.7) which applies in particular to the Nevanlinna

class (Example 2.8).

In §3 we briefly indicate how to use our technique in conjunction with a result

of Sadullaev concerning bounded functions [11, Theorem 6] to extend this result

so as to include tangential limits.

2. / polynomially bounded. Let fi be a bounded, smooth (C°°) domain in

Cn with P G bfi. Assume z —> £ = p(z), p := (pi,..., p2n) is a C°°-diffeomorphism

of a neighborhood V of P onto the open unit ball (for simplicity) in R2n, with

p(P) = 0, such that near P the boundary of fi is given locally by the equation

Pf(zf,...,zn) =0, and such that p~l(C+) C fi. Here, C+ is the "cone"

(1)_ C+ := U G R2" | fc > 0, 1 < j < n}.
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Let T C bfi be the manifold

(2) T := {z G bfi | p2(z) = ■ ■ ■ = pn(z) = 0}.

We assume throughout that T is totally real.

We say that a function / defined on fi is polynomially bounded if there exists

C > 0 and N G N such that

(3) l/WI < C/d(z)N.
where d(z) := dist(;z,bfi).

The following constitutes a portion of Theorem 1.3 in [13] (0(U) denotes the

holomorphic functions).

LEMMA 2.1. f G 0(U) is polynomially bounded if and only if (Re/)+, the
positive part of Re /, is polynomially bounded.    D

Our first uniqueness theorem can be regarded as a generalization to the poly-

nomially bounded functions of a result of Pincuk [9] for continuous functions. For

U C Rn open, denote by V(U) the usual space of smooth functions compactly

supported inside U.

THEOREM 2.2. Let fi,P, and p be given as above. Let f G 0(U) satisfy

(Re/)+ is polynomially bounded near P. Assume there exists a sequence of n-

tuples {(ck,..., ck)} with

(4) lim ck = 0,        ck >0, 1<j < n,
fc-»oo   J J

such that

(5) lim   /    f(z)ip(pn+i(z),...,p2n(z))dzf A ••• Adzn =0
k^°°Jrk

v^ePl | (£„+i,...,6n) I  Y ^2<1
V{ j=n+l

where the Tk are the manifolds

(6) rfc := {z G V | pj(z) = ck,  1 < j < n}.

Then f is identically 0.

Note that (5) says that the traces of / on Tk converge in D'(T) (compare Re-

mark 1 in §2 and the beginning of §4 in [14]). In particular, therefore, (5) holds

if these traces converge in an L^-sense. We would like to emphasize that point-

wise convergence everywhere also suffices. For simplicity, we set z(£i,..., $2«) :=

P~l (ii i • • •, Í2n)- Then we have

COROLLARY 2.3. The conclusion of Theorem 2.2 remains valid, if (5) is re-

placed by pointwise convergence

(7) lim f(z(ckf, ...,<£,£„+!,..., 6«)) = 0,

for all (£n+i, • • •, &n) is some open set. Note that convergence is not required to be

uniform.

PROOF. A Baire category argument shows that there exist an open set E and

M such that

(8) \J(z(c\,...,<Í,   ín+l,...,6n))|<M)      V/ceiV,  V(£„+i,...,£2n)e£.
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(7) and (8) now imply that (5) holds for ip supported in a ball contained in E;

therefore Theorem 2.2 applies.    D

As already mentioned in the introduction, Theorem 2.2 and, hence, Corollary

2.3 apply to the Hardy spaces as well as to the Bergman spaces.

Example 2.4 illustrates the necessity of requiring some bound on the growth

of /. Example 2.5 shows that the requirement of convergence on an open set, in

equation (7), cannot be replaced by almost everywhere convergence (in contrast to

the bounded case, where convergence on sets of positive measure suffices; see §3).

They work for n = 1 as well as for n > 1.

EXAMPLE 2.4. A result of Arakeljan [2, Satz 3, p. 139] implies that there exists

a nonzero function /, analytic in the unit disc, which satisfies

(9) |/((1 - l/k)el6)\ < 1/fc, -7t/4<0< 71-/4 VfceN.

This example is easily lifted to higher dimensions (see the next example) to illustrate

that without bounds on the growth of the functions near the boundary, Theorem

2.2 fails.
EXAMPLE 2.5. Let fi be a bounded smooth domain in C2 whose boundary bfi

contains

(10) {eie | -tt/4 < 6 < tt/4} x {w | |w| < 1}.

Let P= (1,0) and let

(11) T := {(z,w) | (z,w) = (el6,u), -tt/4 < 6 < tt/4, -1/2 < u < 1/2}.

Then P G T, and T is totally real. Let g be a nonzero function analytic in the unit

disc, polynomially bounded, and such that the radial limits exist and are equal to

0 a.e. on {el8 [ —tt/4 < 6 < tt/4}. That such a function exists follows from the

fact that one can arbitrarily prescribe measurable boundary values and a bound

for the growth (as long as it goes to infinity for \z\ —► 1); see [2, p. 154] and [3].

Then the function f(z,w) := g(z) has normal limits 0 a.e. on T (with respect to

2-dimensional euclidean measure on T) and is polynomially bounded near P, yet is

not identically 0.

REMARK 2.6. For n = 1, Theorem 2.2 is known though somewhat hard to

pinpoint in the literature. Compare, however, [5, Chapitre I; especially Théorème

VIII and the remark following it]. For convenience, we outline a simple argument:

by considering a smaller smooth domain which shares a piece of boundary with fi

near P, we may assume that / is polynomially bounded on all of fi. Then / admits

a distribution boundary value tj on bfi [13, Theorem 1.3]. Combining this with

Cauchy's formula, we have for 2 G fi:

where the pairing is between D'(bU) and D{bU) (the usual spaces of distributions

and C°°-functions, respectively, on bfi). The term dc/da is the unique C°°-function

on bfi such that dc = (dc/da) ■ da, where do is the length element of bfi. By

assumption (5), r¡ is supported away from P; thus the right side of (12) (and hence

/) is analytic in a full neighborhood of P. Then (5) implies that this function

vanishes on a full piece of bfi near P. It is therefore identically 0.    D
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PROOF OF THEOREM 2.2. By the previous remark we need only consider the

case n > 1. Now [13, Theorem 1.3] implies that there exists

(13) lim   / f(z)x(p2(z),...,P2n(z))da£

for all x smooth and supported in a neighborhood of the origin in R2™"1. Here daE

is the euclidean surface element on the hypersurface {pi = e}. Actually, in [13] only

the surfaces {z [ d(z) = e} = bU£ are considered. However, the arguments easily

carry over to cover the case of the level surfaces of any smooth defining function

for fi. We now proceed as in §5 of [14]: since T is totally real, there exists a vector

in T^-(r) which is not contained in T^(bfi), the complex tangent space of bfi at

P. We may assume that this vector is dz/d£2n(P), thus

(14) dz/dt-2n(P)$Tyy(bU)

(otherwise compose (pn+i, ■ ■ ■ ,P2n) with a real linear transformation of R" onto

itself). (14) also holds in a neighborhood of P. Let us define f£ G C°°(Uf x U2) as

(15) /«(6,---.6«) :=/(«(£, 6, ■.-,&»))

f°r ((&, • • •, &n-i), &n) &UfXlJ2, where Uf and U2 are (small) neighborhoods of 0

in R2™~2 and R respectively. We are now in a position to apply Theorem 4.1 in [14].

See also the discussion preceding that theorem. The theorem says that from the

convergence of these (2n — l)-dimensional integrals we may conclude convergence of

the integrals over lower-dimensional manifolds, in fact over 1-dimensional manifolds

of the form {z/p\(z) = e, Pj(z) = Cj, 2 < j < 2n_i}. Moreover, the convergence

(as £ —> 0+) is in the space of C°°-functions with respect to (£2,..., £2n-i)- More

precisely, (13) implies that

(16) lim/e=:/o

exists in C°°(Uf, D'(U2)), the space of D'(U2)-valued C?°°-functions on Uf. This

space carries the usual topology of locally uniform convergence of the functions

and their derivatives (see [15, §40]). Now we split (£2, • • •, Í2n-i) into two groups:

(£2, • • • ; in) and (£n+ii • • • ) Í2n-i) and assume that Uf has the form Uf^f x Uf¿

for small neighborhoods of 0 in Rn_1. Then the convergence (16) implies a fortiori

convergence in C°°(i/i,i, V'(Uf<2 x U2)). Note that, in particular, /o from (16) is in

C°°(Ultf, D'(U1<2 x U2)). So for (6, ...,£„) G U1A fixed, /0 defines a distribution

in D'(Uft2 x U2) which we denote by /o,(i2,...,$„)■ Similarly, we define the traces

(17) /e,(Í2,...,ín)(£n+l' • • • 1 Í2n) •= fe(Î2, ■■-, Í2n)

and conclude from the convergence in C00(<7i,i, D'(Uii2 x U2)) that

(18) /«,(€,....,€.) eZo+ f°>U>.-.M    in D'^'2 X U*)>

and the convergence is, moreover, locally uniform in (£2, • • •, £n). Therefore, the

following limit exists and may be calculated as shown:

(19) lim       /Cl,(ca,...,c„) = /o,(0.0) = ,lim /c* (c*.cfk) = 0    in D'(Uh2xU2).
(ci ,...,c„)—>0 k—>oo      2      ¿

Here, we have used (4) and (5). That (5) implies the last equality in (19) follows

from standard distribution theory and the fact that dzi A • • • A dzn is nonzero on
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supp^ C Tfc, for A; sufficiently large (since then Tfc will be totally real on suppV');

also compare the discussion at the beginning of §4 in [14]. Pincuk's Edge of the

Wedge Theorem [8, Theorem 1] now gives the desired result. In Pincuk's notation,

with /+ := /, /~ := 0, (19) implies that the assumptions of Theorem 1 are

fulfilled. Therefore, / and 0 have a common analytic continuation, whence / = 0.

This concludes the proof of Theorem 2.2.    D

If the function / is a priori known to omit (at least) one value a G C, the growth

condition can be relaxed (compare also Remark 3.2):

COROLLARY 2.7.   Same assumptions as in Corollary 2.3, but with the growth

condition on (Re/)+ replaced by

(20) range(/) Ç C\{a},        a G C,

and

(21) log+ I/] polynomially bounded near P.

Then f is identically 0.

PROOF. Consider the covering map of C onto C\{a}:

(22) t - Ó + a.

Near P, f lifts to give an analytic branch of log(/ — a), whose real part is poly-

nomially bounded from above, by (21). Let a ^ 0. Let V be a small neigh-

borhood of 0 G C, such that its inverse image under the covering map consists

of countably many disjoint open sets Vj = Vn + 2jttí, j G Z. A Baire cate-

gory argument yields an open set E in (£n+i> • • ■, £2n)-space and ko such that

f(c\, ...,ckn, £„+i,..., Í2n) GV íor k>ko and (£n+i, • • •, 6«) G E. Because the

Vj are disjoint, we conclude that there is a subsequence Tfcm such that log(/-a) con-

verges to a constant Ço along the Tkm (in the sense of (7)) for all (£n+i, • • •, &n) G E,

or that there is a subsequence such that Im log(/ — a) converges to +oo or —oo

uniformly on E along the subsequence. In the first case, Corollary 2.3 applies and

yields that log'(/ - o) = Co- Note now that ei0 + a = 0, so that we get / = 0. The

second case contradicts the fact that log(/ — a) and hence Im log(/ — a) must have

distributional limits along the Tfc (existence of these limits follows from the poly-

nomial boundedness; compare the arguments that led to the first part of formula

(19) in the proof of Theorem 2.2). Consider now the case a = 0. Then we have

an analytic branch of log/, and Re log/ will tend to -oo pointwise along the Tfc.

This contradicts the fact that Re log / must have distributional limit along the Tk

(as above): by a Baire category argument, we may assume that

(23) Relog/(c5,...>c*,6t+i,...,6»)<0

for all (£„+i, • ■ •, Í2n) hi some open set E and all k > k0. By considering positive

test functions supported in E and applying Fatou's lemma, one concludes from the

existence of the distributional limit that the function which is identically -co on

some open set E' is E is integrable. This contradiction rules out the case o — 0.    □
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An important class of functions to which Corollary 2.7 applies is provided by

the following

EXAMPLE 2.8. / G 0(U) is said to belong to the Nevanlinna class of fi [12,

pp. 47, 48; 10]), if   '

(24) sup /     log+ I/) da£ < oo.
e>oJbnc

A standard argument involving the subharmonicity of log+ |/| and polynomial es-

timates (uniform in e) on the Poisson kernels of the domains fi£ imply that the

functions in the Nevanlinna class satisfy (21). Thus, if a Nevanlinna function omits

a value and converges pointwise to a constant along the Tk, the function reduces to

a constant.

We conclude this section by pointing out that the geometric setup introduced at

the beginning allows for tangential approach of the Tk to bfi, if n > 1. Indeed, if

the sequence {(ck,... ,ck)} is chosen appropriately, the sequences

{z(cf,...,c£, £n+i,..., 6n)}

approach their limits z(0,..., 0, £n+i, ■ ■ ■, &n) G bfi tangentially to arbitrary high

(prescribed) order.

3. The bounded case. In [11] it is shown that a bounded function / whose

normal limits for a set of positive (n-dimensional Lebesgue) measure of T lie in a

polar set [4, 2.1 and 2.2] must necessarily be constant. Clearly, the normal limits

can be replaced by suitable limits along more general curves, but if one wants these

limits to yield normal limits in a pointwise fashion (so as to then invoke Sadullaev's

Theorem), severe restrictions concerning tangential approach must be imposed.

These restrictions are discussed and illustrated by examples in §3 of [1] and in

[16]. It is therefore interesting that the technique used in the proof of Theorem

2.2, which is nonpointwise in nature, allows us to extend Sadullaev's result to the

setting introduced in §2, that is, to the tangential approach as discussed at the end

of that section. We let n > 1.

THEOREM 3.1.   lei fi, P, p, {Tk}, andT be as in §2. Let

£cj (£„+!,...,&„) |   Y   ^2<1[
[ j=n+l )

have positive measure. Assume that f G 0(U) is bounded and that there exists a

sequence of n-tuples {(c\,..., cn)} as in Theorem 2.2 for which the limits

(1) lim /(«(<£,...,<£,£„+!,..., Can))
fc—>oo

exist and are contained in a (fixed) polar set for all (£n+ii ■ ■ ■ ■> &n) G E. Then f

is constant.

PROOF. As mentioned, the proof is by reduction to [11, Theorem 6]. We

keep the notations as in the proof of Theorem 2.2. The sequence {fck,(ck,...,ck)} 'm

bounded in L°°(£n+i, ■■■, Í2n)- It converges weak-* on D(£,n+i, ■ ■ ■, £2«), which is

dense in L1 (£n+i>..., £2«)- Therefore, /o,(o,...,o) is trie weak-* limit of this sequence.

On the other hand, the normal limits of / exist for almost all (£n+i,..., fan); see

[11, Theorem 3], or combine [7, Theorem 1] with a Fubini argument. We call the
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resulting £°° function h. Then

(2) fc = /o.(o,...,o)    in£(|.+1,...,6.)

because both are the traces on T of the boundary value /0 of / (note that this

boundary value is independent of the defining function for fi, with whose level

surfaces it is defined; it is in any case given by the function defined on bfi a.e. by

the nontangential limits of the bounded function /). On the set E, the weak-* limit

coincides a.e. with the pointwise limit, so that

(3) /o,(0,...,0)(£n+l,-••,&«) =   lim  f(z(ckf,...,Ckn,£n+l,---,Í2n))
' fc—»oo

a.e. on E. The reduction to [11, Theorem 6] is complete (by (1) and (2)).    D

REMARK 3.2.  By taking into account that the universal cover of C\{a,b} is

the unit disc (see [6, p. 15] for the covering map), one obtains uniqueness theorems

for functions which omit two values; no growth condition is then required.
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