A rigidity property for the set of all characters induced by valuations
HTML articles powered by AMS MathViewer
- by Robert Bieri and John R. J. Groves
- Trans. Amer. Math. Soc. 294 (1986), 425-434
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825713-6
- PDF | Request permission
Abstract:
If $K$ is a field and $G$ a finitely generated multiplicative subgroup of $K$ then every real valuation on $K$ induces a character $G \to {\mathbf {R}}$. It is known that the set $\Delta (G) \subseteq {{\mathbf {R}}^n}$ of all characters induced by valuations is polyhedral. We prove that $\Delta (G)$ satisfies a certain rigidity property and apply this to give a new and conceptual proof of the Brewster-Roseblade result [4] on the group of automorphisms of $K$ stabilizing $G$.References
- George M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459–469. MR 280489, DOI 10.1090/S0002-9947-1971-0280489-8
- Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195. MR 733052
- Kurt Leichtweiss, Konvexe Mengen, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1980 (German). MR 586235
- J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), no. 3, 385–447. MR 491797, DOI 10.1112/plms/s3-36.3.385
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 425-434
- MSC: Primary 16A27; Secondary 12J20, 13A18
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825713-6
- MathSciNet review: 825713