General convergence of continued fractions
HTML articles powered by AMS MathViewer
- by Lisa Jacobsen
- Trans. Amer. Math. Soc. 294 (1986), 477-485
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825716-1
- PDF | Request permission
Abstract:
We introduce a new concept of convergence of continued fractions—general convergence. Moreover, we compare it to the ordinary convergence concept and to strong convergence. Finally, we prove some properties of general convergence.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197 Marcel G. de Bruin and Lisa Jacobsen, The dominance concept for linear recurrence relations with applications to continued fractions (to appear).
- Hans Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81 (1920), no. 2-4, 235–319 (German). MR 1511966, DOI 10.1007/BF01564869 G. Hamel, Über einen limitärperiodischen Kettenbruch, Arch. Math. Phys. 27 (1918), 37-43. Lisa Jacobsen, Modified approximants for continued fractions. Construction and applications, Det Kgl. Norske Vid. Selsk. Skr. No. 3 (1983), 1-46.
- William B. Jones and Wolfgang J. Thron, Continued fractions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, Mass., 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR 595864
- Oskar Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957 (German). MR 0085349
- W. J. Thron and Haakon Waadeland, Modifications of continued fractions, a survey, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 38–66. MR 690452
- Haakon Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), no. 1, 57–64. MR 722415, DOI 10.1090/S0002-9939-1984-0722415-5
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 477-485
- MSC: Primary 40A15; Secondary 30B70
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825716-1
- MathSciNet review: 825716