Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


General convergence of continued fractions
HTML articles powered by AMS MathViewer

by Lisa Jacobsen PDF
Trans. Amer. Math. Soc. 294 (1986), 477-485 Request permission


We introduce a new concept of convergence of continued fractions—general convergence. Moreover, we compare it to the ordinary convergence concept and to strong convergence. Finally, we prove some properties of general convergence.
  • Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
  • Marcel G. de Bruin and Lisa Jacobsen, The dominance concept for linear recurrence relations with applications to continued fractions (to appear).
  • Hans Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81 (1920), no. 2-4, 235–319 (German). MR 1511966, DOI 10.1007/BF01564869
  • G. Hamel, Über einen limitärperiodischen Kettenbruch, Arch. Math. Phys. 27 (1918), 37-43. Lisa Jacobsen, Modified approximants for continued fractions. Construction and applications, Det Kgl. Norske Vid. Selsk. Skr. No. 3 (1983), 1-46.
  • William B. Jones and Wolfgang J. Thron, Continued fractions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, Mass., 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR 595864
  • Oskar Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957 (German). MR 0085349
  • W. J. Thron and Haakon Waadeland, Modifications of continued fractions, a survey, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 38–66. MR 690452
  • Haakon Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), no. 1, 57–64. MR 722415, DOI 10.1090/S0002-9939-1984-0722415-5
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 40A15, 30B70
  • Retrieve articles in all journals with MSC: 40A15, 30B70
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 294 (1986), 477-485
  • MSC: Primary 40A15; Secondary 30B70
  • DOI:
  • MathSciNet review: 825716