Martingale transforms and complex uniform convexity
HTML articles powered by AMS MathViewer
- by J. Bourgain and W. J. Davis
- Trans. Amer. Math. Soc. 294 (1986), 501-515
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825718-5
- PDF | Request permission
Abstract:
Martingale transforms and Calderon-Zygmund singular integral operators are bounded as operators from ${L_2}({L_1})$ to ${L_2}({L_q})$ when $0 < q < 1$. If $Y$ is a reflexive subspace of ${L_1}$ then ${L_1}/Y$ can be renormed to be $2$-complex uniformly convex. A new proof of the cotype 2 property of ${L_1}/{H_1}$ is given.References
- Aline Bonami, Étude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 2, 335–402 (1971) (French, with English summary). MR 283496
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI 10.1007/BF02384306
- J. Bourgain, New Banach space properties of the disc algebra and $H^{\infty }$, Acta Math. 152 (1984), no. 1-2, 1–48. MR 736210, DOI 10.1007/BF02392189
- J. Bourgain, Extension of a result of Benedek, Calderón and Panzone, Ark. Mat. 22 (1984), no. 1, 91–95. MR 735880, DOI 10.1007/BF02384373 —, The dimension conjecture for polydisc algebras, Trans. Amer. Math. Soc. (to appear). —, Extension of ${H^\infty }$-valued operators and bounded bianalytic functions, Trans. Amer. Math. Soc. 286 (1984), 313-337.
- D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 208647, DOI 10.1214/aoms/1177699141
- D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, DOI 10.1214/aop/1176997023
- D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 270–286. MR 730072
- D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), no. 6, 997–1011. MR 632972
- Burgess Davis, On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187–190. MR 268966, DOI 10.1007/BF02771313
- William J. Davis, D. J. H. Garling, and Nicole Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), no. 1, 110–150. MR 733036, DOI 10.1016/0022-1236(84)90021-1
- G. A. Edgar, Complex martingale convergence, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 38–59. MR 827757, DOI 10.1007/BFb0074691
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Bernard Maurey, Isomorphismes entre espaces $H_{1}$, Acta Math. 145 (1980), no. 1-2, 79–120 (French). MR 586594, DOI 10.1007/BF02414186
- G. Pisier, Sur les espaces de Banach $K$-convexes, Seminar on Functional Analysis, 1979–1980 (French), École Polytech., Palaiseau, 1980, pp. Exp. No. 11, 15 (French). MR 604393
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
- D. A. Trautman, A note on MT operators, Proc. Amer. Math. Soc. 97 (1986), no. 3, 445–448. MR 840626, DOI 10.1090/S0002-9939-1986-0840626-7
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 501-515
- MSC: Primary 46E40; Secondary 42B20, 46B99, 60G46
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825718-5
- MathSciNet review: 825718