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STABILITY OF MINIMAL ORBITS l 

BY 
JOHN E. BROTHERS 

ABSTRACT. Let G be a compact Lie group of isometries of a riemannian manifold 
AI. It is well known that the minimal principal orbits are those on which the volume 
function v. which assigns to p E M the volume of the orbit of p. is critical. It is 
shown that stability of a minimal orbit on which the hessian of v is nonnegative is 
determined by the degree of involutivity of the distribution of normal planes to the 
orbits. Specifically. if the lengths of the tangential components of Lie brackets of 
pairs of orthonormal normal vector fields are sufficiently small relative to the 
hessian of v. then the minimal orbit is stable. and conversely. Computable lower 
bounds arc obtained for the values of these parameters at which stability turns to 
instability. These lower bounds are positive even in the case where v is constant. and 
arc finite unless the normal distribution is involutive. Several examples in which M 
is a compact classical Lie group and G is a subgroup of M are discussed. showing in 
particular that the above estimates are sharp. 

1. Introduction. Let G be a compact, connected Lie group of isometries of a 
connected riemannian manifold M. Let v denote the function which assigns to each 
p E M the volume of the orbit of p. It is well known that the minimal principal 
orbits of G are precisely those on which v is critical. Since its discovery in [H), this 
result has been highly useful in the study of minimal and area minimizing submani-
folds; see, for example, [HL). 

An obvious question which arises is whether such minimal orbits are stable, where 
by stability we mean nonnegative second variation of area. An appealing conjecture 
is that stable minimal orbits correspond to local minima of v. Such a condition is 
clearly necessary for stability and is, in fact, sufficient for orbits of codimension one 
as was shown in [BJ1). Consider, for example, the circles of latitude on a surface of 
revolution in R3. On the other hand, for orbits of codimension greater than one this 
condition is far from sufficient as is shown by the following example: Let M = S3 
C C 2 and G = SI C C act on M by scalar multiplication. Then all orbits of G are 
great circles of length 2'7T, and none is stable. Although one might reason that this 
example is pathological bescause the critical points of v are degenerate, hence 
conjecture that a hypothesis of strict relative minimum, or even of positive definite 
hessian (in normal directions to the minimal orbit) might be sufficient to ensure 
stability, it turns out that even this is not true. One would also like to have a theory 
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strong enough to treat the case where M is a Lie group with a bi-invariant metric 
and G is a subgroup acting on M by left multiplication, so that v is constant, as in 
the above example with M = 8 3, G = 81• As evidence that such orbits can be stable 
one has the standard embeddings of 8U(2) in 8U( n) and of 80(3) in 80(4). Each of 
these subgroups is of least area in its integral homology class [T]. 

Using a standard differential form argument one can show that if the distribution 
of normal planes to the orbits is involutive, then a minimal orbit minimizes area in 
its integral homology class, and hence is stable. (Here all orbits are assumed to be 
principal.) In particular, this implies stability of codimension one orbits. Taken 
together with evidence from David Bindschadler's discussion of the invariant Plateau 
problem in the case where the boundary consists of finitely many orbits [BD], this 
leads one to conjecture that stability is determined by the degree of involutivity of 
the normal distribution as measured by the lengths of the tangential components of 
Lie brackets of pairs of orthonormal normal vector fields. This conjecture turns out 
to be true. If these parameters are sufficiently small relative to the hessian of v, then 
the minimal orbit is stable, and conversely. This is proved in 4.9. 

In §3 we develop a formula for the second variation of area of a minimal principal 
orbit. To our knowledge this formula is new. It involves Lie derivatives instead of 
covariant derivatives as in the formula of J. Simons [8]. 

An immediate corollary of the second variation formula is that if the normal 
distribution is involutive along a minimal orbit N, then N is stable if and only if the 
hessian Hv of v is nonnegative on N (4.2). In §4 we also obtain computable lower 
bounds for the values of the above-mentioned parameters at which stability turns to 
instability (4.3, 4.5, 4.6, 4.8). These lower bounds are always positive, even for 
Hv = 0 in which case we show by example in §5 that they are sharp. For the general 
case of nonvanishing hessian our results are not sharp. Indeed, most do not involve 
the size of Hv' We defer to a later paper [BJ2] the derivation of a priori second 
variation estimates involving both the size of Hv and the degree of involutivity of the 
normal distribution. 

In §5 our results are applied to the discussion of various examples showing, in 
particular, that products of unitary groups (hence in particular a maximal torus of 
U( n » are stable in U( n), that products of certain special unitary groups are stable in 
U( n), and that products of special orthogonal groups are stable in U( n). We also 
show that a maximal torus of 8U( n ) is not stable in 8U( n ). 

Finally, I would like to thank Jiri Dadok for several very helpful conversati6l'ls. 

2. Preliminaries. In general we use standard notation and terminology. A good 
basic reference is [KN]. 

With M and G as in the Introduction, we will assume that all orbits of G are 
principal, that is, that the isotropy groups are conjugate. This implies that the 
quotient G \ M is a smooth manifold and that the quotient map F: M ~ G \ M is a 
smooth submersion. Denote the orbit of p E M by Np = {g( p): g E G} and set 
dim M = m, dim Np = n. Let v( p) be the n-dimensional volume of Np- Then 
v(p) = .)ft'n(Np)' where.Y{'n is the n-dimensional Hausdorff measure on M. Note 
that v is a smooth function. 
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T(M) is the tangent bundle of M and :!£(M) is the vector space of smooth vector 
fields on M. For each V E :!£(M), !l't and V't are, respectively, the Lie and 
covariant derivatives with respect to Vof order k = 1,2, ... , acting on tensor fields 
of all types. 

Denote by a the metric tensor of M, extended in the usual way to the bundle 
Ak(M) of k-vectors tangent to M for k = 2,3, ... , m. Where suitable we also use 
the notation aa, '1'/) = (g, '1'/), a, gil2 = IIgli. The term "vertical (respectively, 
horizontal) vector field" will be used to denote a vector field X E :!£ (M) such that 
X( p) is tangent (respectively, normal) to Np for each p E M. If W is a horizontal 
vector field, then H W( p) denotes the mean curvature of Np at p E M in the 
direction W(p). Note that if W is G-invariant, then H W is constant on each orbit. 

If f E COO( M) has a critical point at p E M, then one defines the hessian Ht< p) 
of f at p to be the bilinear function on T/ M) such that Ht< p)( v, w) = V 0 W(f)( p), 
where V, Ware smooth extensions of u, wE Tp(M) to a neighborhood of p. Ht<p) 
is symmetric and does not depend on the extensions V, W. In terms of local 
coordinates (Xl, ... , x n), Ht<p) has matrix [a 2flax iaxJ(p)]. 

Fix p E M and let X be a smooth vector field defined in a neighborhood of Np' 
Denote the flow of X by CPI' For k = 1,2 the kth variation of area of Np with 
respect to the deformation vector field X is defined by 

3?l( X) = :r:Jf'n( cptNp)lt~o' 
Then Np is minimal if 3;1)(X) = 0 for X E :!£(M) and stable if 3;2)(X) ;;:. 0 for 
X E :!£(M). 

We recall from [L, p. 7] that if X E :!£(M) has horizontal projection W, then 

3;1l(X) = 3;ll(W) = -1 H W dJf'n. 
Np 

We also observe that [S, 3.2.2] implies that if Np is minimal, then 3;2l(X) depends 
only on the restriction of X to Np and 3?l(X) = 3;2l(W). 

3. Second variation. 

3.1. LEMMA. Let WE :!£(M) be horizontal and g be a smooth n-vector field on an 
open subset Mo of M such that g(p) is tangent to Np and IIg(p)1I = v(p) for p E Mo· 
Then 
(i) H!l'wa)(g,g) = _v 2Hw = v(Wv), 

(ii) H!l',ta)(g,g) = (WV)2 + v(W 2v) + (!l',tg, g) +11!l'wg( 
PROOF. Fix p E Mo and choose orthonormal vectors e l , ... , en E Tp(Np ) such 

that g(p) = v(p)go, go = e1 1\ .•. 1\ en' It is shown on p. 434 of [LS] that 
HLwa)(go, go) = (Awgo, go), where AW: A*T/M) -+ A*T/M) is defined by 
AW(u) = V'"W, u E T/M), and then extended to A*Tp(M) as a derivation. Thus 
Awgo = l::'~lel 1\ ... 1\ V'eiW 1\ ... 1\ en' and 

n 
(Awgo, go) = L (V'eiW,e;) = _HW(p). 

i~l 
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To verify the second part of (i) we first assume W to be invariant. Then the flow 
of W preserves the fibres of F and so referring to [L, p. 7] we have 

(Wv)(p) = - f HWdYen = -HW(p)v(p). 
Np 

Finally, Wv = -Hwv for arbitrary W follows from the linearity in W of both Wv 
and HW. 

To verify (ii) first observe that since 2 W commutes with contractions, 

(*) (2 wO')( 111,112) = W< 111,112) - < 2 w111' 112) - < 111,2 w112) 
whenever 111,112 are smooth n-vector fields on a neighborhood of p. Applying this 
with 111 = ~ = 112 we obtain (2 wO' )a, ~) = W(v 2) - 2( 2 w~, ~) and infer using (i) 
that 

( **) 
Applying (*) with 111 =~, 112 = 2 w~ we obtain (2 wO')(~, 2 w~) = -112 w~1I2 -
(2~t ~). Finally, using again the fact that 2 W commutes with contractions, we 
conclude that 

H 2~0' )( t~) = H W [( 2 wO')( t~)] - 2( 2 wO')( 2 wt ~)] 

= W(vWv) + 112w~112 + (2~t ~). 
Fix p E M and choose a smooth n-vector field ~ on an open subset Mo as in the 

Lemma and such that in addition Yen(Np - Mo) = O. 

THEOREM. Let WE f1l'(M) be horizontal. Then 

(i) 8~1)(W) = v(pr1f WvdYe n, 
Np 

(ii) 8~2)(W) = f v(p r 1W2v + < 2 W~O, ~o) + 112 w~0112 dYen, 
Np 

where ~o = V(p)-1~. 

PROOF. Denote by CPt the flow associated to W. Ilcpt.~112 = (cpjO' )(~,~) hence 

dd Ilcpt.~111 = v-1(2wO' )(t~) = Wv, 
t t-O 

and so the Lemma implies 

;Yen( cptNp)l_ =; f Ilcpt·~oll dYen I = v(p r 1 f WvdYen. 
t 0 Np t=O Np 

Similarly, 

d:llcpt.~111 = (2vr1(2~0')(~,~) -v-3[H2wO')(t~)]2. 
dt t-O 

3.2. REMARKS. Inasmuch as the right side of (i) is linear in W, it follows from the 
Theorem that Np. is minimal if and only if Wv = 0 for each invariant horizontal 
vector field W. This is clearly equivalent to the statement that Np is minimal if and 
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only if the function v * on G \ M corresponding to v is critical at F( p), the condition 
discovered for principal orbits of isometry groups by W. Y. Hsiang [H]; also see [L, 
p.21]. 

On the other hand, second variation cannot be analyzed so simply because of the 
fact that if W is invariant and horizontal, then !l' w~ = 0 and so the right side of (ii) 
reduces to IN v(p)-lw2vd.)f'n. (Indeed, it was shown in the proof of Lemma 3.1 

p 

that <!l' wt 0 = O. However, !l' w~ is tangent to the fibres of F because in the 
present case the flow of W preserves the fibres.) Consequently, it would seem that 
information concerning the second derivative of v * is not sufficient to determine 
stability of a minimal Np" 

3.3. For the remainder of this section we fix a critical point Po of v and denote 
N = Np ' 8(k) = 8p(k). We also fix invariant orthonormal normal vector fields 

() 0 

WI' ... , Wm _ n on N. Fix pEN and extend each W;( p) to a horizontal vector field 
~ defined in a neighborhood of p. Denote by W;k(P) the projection of [~, Wd(p) 
onto N. Lemma 2 of [ON] implies that W;k(P) depends only on W;(p) and Wk(p). 
Thus since each ~ can in particular be chosen to be invariant, W;k is clearly 
smooth. 

It is also shown in [ON] that if G \ M is provided with the metric such that 
F* IT/Np).L is an isometry for p EM, then 

IIW;k11 2 = t[K*(F*W;, F*Wk) - K(W;, Wk)], 

where K and K* are sectional curvatures in M and G \ M, respectively. 
For i, k = 1, ... , m - n denote 

Pi = Card{k: W;k =1= O}, 
Assume Pi =1= 0 for i ~ il and Pi = 0 for i > i1. Define bik = 1 if W;k =1= 0 and 
bik = 0 otherwise. 

Let W = L;';.ln aiW; be a smooth normal vector field on N. For i, k = 1, ... , il 
denote iii = Pi-1/ 2ai, rik = [(iii)2 + (iik)2]1/2, Aik = {p: rik(p) =1= O}, and define 
Oik: Aik ~ SI so that for p E Aik' (rik(p),Oik(p)) are the polar coordinates of the 
orthogonal projection of W(p) = L;"=ln iii(p)Wi(P) into the span of 
{W;(p), Wk(P)}· Denote dO ik = oik*n, where n is the positively oriented unit 
I-form on SI. We have 

dO ik = (piPkrl/2(rikr2(a ida k - akda i). 

COROLLARY. 

m-n 
8(2)(W) = f v(por1Hv(W,W) + L IIda i ll 2 - L (W;k,aida k - akdai)d.)f'n 

N ;=1 i<k 
m-n 

= f v(por1Hv(W, W) + . L IIda i ll 2 d.)f'n 
N 1=/1+ 1 
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PROOF. Extend WI"'" Wm - n to smooth invariant orthonormal horizontal vector 
fields in a neighborhood of N, extend W smoothly, and define ~,~o as in 3.1 with 
Po E Mo· Let Xl"'" Xm E g(N) be orthonormal vector fields in a neighborhood 
of Po with ~o = Xl A ... A Xn. Denote the flow of W; by cf>~. Denoting M O = N 
and inductively defining 

i=l, ... ,m-n, 

we observe that there is a connected neighborhood U of Po in which each M i is a 
manifold of dimension n + i, with Mm-n n U = U, and in which each W; has 
connected integral curves. For each j we use the flows cf>~ in succession to extend J0 
to Min U. It is clear that 

for i, k = 1, ... , m - n, i < k, and j = 1, ... , n. We also note that inasmuch as ~o 
is invariant under each of the flows cf>~ as was observed in 3.2 and Xl A ... A Xn = ~o 
on N, we can conclude that Xl A •.. A Xn = ~o on U. 

Expanding .!l' w~o we obtain 

.!l'w~o = LaiXi A ... A [W;, Xj](J) A ..• AXn 
;,j 

- (J0, dai) Xl A •.. A W;(J) A •.• AXn• 

where W;(J) indicates that W; occurs as the jth factor. etc. In particular, on N (*) 
implies 11.!l' w~oll2 = L;"=ln Ilda i ll 2• Differentiating again, restricting to N and using 
(*) and the Jacobi identity one obtains 

(.!l'~~o. ~o) = I:a i( .!l'w( Xl A ... A [W;, Xj](J) A .. , AXn), ~o) 
',j 

- (Xj' da i) (.!l' W( Xl A ... A W;(j) A ... AXn). ~o) 

= L aia k([ Wk' [W;. J0]], J0) - ak( Xj' da i) (Wki • X) 
i,j,k 

i~k (7 aiak( -[ W;. [Xj• Wk]] - [J0, [Wk' w;1]. J0) 

- (W;k' aida k - akdai) ) 

L aia k diVN W;k - (W;k' aidak - akdai) 
i<k 

because II XiII = 1 on N. Finally. divN W;k = 0 because W;k is invariant hence 
divN W;k is constant. The first formula is now clear. 

Next we observe that 
il ;1 

L IIda i l1 2 = L bik(lldail12 + Iidakln· 
i=1 i<k 
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Fixing i < k with bik = 1 we see that on Aik' IIdoi ll 2 + IIdokll 2 = IIdrikll2 + 
(rik)2I1d(}ikIl2. On the other hand, doi and dok vanish at almost all points of 
N - Aik because N - Aik has positive Lebesgue density at almost all points of 
N - A ik . 

3.4. REMARK. The second variation formulas in 3.3 are valid in the more general 
situation that, instead of N being a principal orbit of G, there exists a riemannian 
submersion F: M ~ P such that for each horizontal lift W the restriction of H w to 
Np = F -1 { F( P )} is constant for p E M. Then Np is minimal if and only if v is 
critical at p, and if Np is minimal the formulas in 3.3 hold. 

4. Stability. 
4.1. For this discussion we need merely assume the existence of a riemannian 

submersion F: M ~ P such that Np = F -1 { F( P )}, p E M. Assume there exists a 
smooth n-vector field ~ on M such that ~(p) is tangent to Np and IIHp)11 = v(p) 
for p E M. Denote by 0 the smooth n-form on M dual to ~. Orient each Np so that 
~ I Np is positively oriented. 

LEMMA. The horizontal distribution of F is involutive if and only if dO = O. 

PROOF. Let WE g( M) be horizontal. Inasmuch as !l' w commutes with contrac-
tions, 

0= W(tO) = (!l'wtO) + (~, !l'wO) = (~, dtwO) + (~, twdO) = (W II.~, dO) 

because twO = 0 and (**) in the proof of Lemma 3.1 implies that (!l' wt 0) = O. 
(Here t w is interior multiplication by W [KN].) 

Referring to the formula for evaluation of dO on p. 36 of [KN, vol. I] we use this 
to conclude that if Xo, Xl"'" Xn are smooth vector fields in an open subset of M 
which are either horizontal or vertical, then dO( Xo,' .. , Xn) = 0 unless exactly two 
of these vectors, say Xo and Xl' are horizontal. In this case 

and it is clear that the expression on the right vanishes for all such choices of 
Xo,"" Xn if and only if [Xo, Xd is horizontal whenever Xo and Xl are horizontal. 

THEOREM. Assume the horizontal distribution of F to be involutive. Then Np 
minimizes area among all rectifiable currents of dimension n in M which are homolo-
gous to Np if and only if v has an absolute minimum (not necessarily strict) at p. 

PROOF. Inasmuch as any two fibres of F are homologous, necessity is clear. Thus 
assume v to have an absolute minimum at p. Since dO = 0 the following standard 
argument using the form 0 0 = v( p)O can be used to show Np area minimizing: Let 
T be a rectifiable n-current which is homologous to Np' which means that Np - T = 
as for some rectifiable (n + I)-current S. (See [F] for definitions of the terminology.) 
Then since 1100 11 = v(p)jv ::;;; 1, we have 
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4.2. It is well known that currents with the property described in Theorem 4.1 are 
minimal and stable [F, p. 525]. The next result is the infinitesimal analogue of 
Theorem 4.l. 

We will say that the distribution of normal planes to the orbits is involutive along 
Np if for orthonormal vector fields WI' ... ' Wm - n defined on Np the vector fields W;k 
defined in 3.3, i, k = 1, ... , m - n, all vanish on Np • 

THEOREM. (i) Np is minimal if and only if p is a critical point of v. 
(ii) Assume p to be a critical point of v. If Np is stable, then the hessian H v ( p) of v 

at p is nonnegative. Conversely, if the distribution of normal planes to the orbits is 
involutive along Np and Hv( p) ;;a. 0, then Np is stable. 

PROOF. (i) is discussed in 3.2; thus assume p to be a critical point of v. 
Assume there exists w E T/Np).l with Hv(p)(w, w) < O. Let W E ~(M) be an 

invariant horizontal vector field with W(p) = w. It is clear that Hy(W, W) is 
constant on Np ' hence we infer using Corollary 3.3 that 3~2)(W) = Hy(W, W) < o. 

Conversely, if Hy( p) ;;a. 0 and the distribution of normal planes is involutive along 
Np ' then for W horizontal we infer that 3~2)(W) ;;a. v (p)-lfNp Hy(W, W) d.Y{'n ;;a. O. 

4.3. For the remainder of §4 we fix a critical point Po of v and readopt the 
notation of 3.3. Our goal is to strengthen the stability criterion of 4.2 by showing 
that N will be stable provided Hy ;;a. 0 and the numbers lIW;kll = (Pi Pk)I/211W;kll are 
not too large. Denote the largest of these numbers by p., and denote A = 
infv(ptlHy(p)(w,w), where the infimum is taken over Tp(N).l n{w: IIwll = I} 
(and does not depend on pEN). Note that p. = 0 if and only if the distribution of 
normal planes to the orbits is involutive along N. 

THEOREM. If A ;;a. p.2/4, then N is stable. 

PROOF. For W = E7'_l n aiW; we have by Corollary 3.3 

3(2)(W);;a. L bikf (rik)2(lldOik I1 2 -11w;klllldOikll + A) d.Y{'n;;a. 0 
i<k Aik 

because the polynomial x 2 - P.X + A ;;a. 0 for p.2 ~ 4A. 

4.4. LEMMA. Denote by C, the circle of length I with unit positively oriented tangent 
vector field X. For a1, a 2 E C""( C,) and c E R denote 

(.(a 1,a2) = l11da1 112 +lIda 2 112 - c(X, aIda 2 - a 2da1)d.Y{'l. 
c, 

(i) If Icll ~ 2'IT, then Ie ;;a. o. 
(ii) If Icll > 2'IT, then inf Ie = -00. 

PROOF. We can assume I = 2'IT and, because Ie(a1, a 2) = I_e(a 2, a1), that c > O. 
Let U(2) have the bi-invariant metric induced from the standard hermitian inner 

product of ?t(2, C) by the inclusion of U(2) in ?t(2, C). Embed C2w = U(l) in U(2) 
as matrices of the form 

0] . 
1 ' 
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U(l) is an orbit of the action of U(l) on U(2) by left multiplication. 

-1 ] o ' 
are orthonormal vectors normal to U(l) at I; extend WI' W2 to normal vector fields 
on U(l) by left translation. In view of the discussion in 5.1 we see that W12(l) is the 
projection on U(l) of 

0.], 
-I 

which is X(l). Thus W12 = X. 
We next show that U(l) is of least length in its homology class. Indeed, let C be a 

minimizing geodesic through I which is homologous to U(l). Then C is a one-
parameter subgroup. Since the rank of U(2) is 2, C is contained in a maximal torus 
T2, which is conjugate to Sl X Sl with the product metric. But £l(C) ~ £l(U(l» 
= 2'IT and so C is conjugate to U(l). 

We infer using Corollary 3.3 that the second variation of length of U(l) with 
respect to W = alWI + a2W2 is equal to 11(a1, a2), hence conclude using [F, 5.1.7] 
that 11(a1, a2) ~ O. Finally, we observe that if 0 < c ~ 1, then c-1/c<al, a2) ~ 
11(a1, a2) ~ O. 

Defining r = rl2 = [(a 1)2 + (a 2)2]1/2 and, assuming r > 0 and (J = (J12 as in 3.3 
we have a l = rcos (J, a 2 = r sin(J, 

In case (J is the identity and r is constant this reduces to Ic(al, a2) = 2'ITr2(1 - c). 
(ii) is now clear for c > 1. 

4.5. Assume there exist invariant orthonormal vector fields Xl" .. , Xn on N such 
that the trajectories of each Xj are compact; these have constant length Lj since Xj 
is invariant. Recall the definitions of W;k and "i in 3.3. 

THEOREM. If Hv ~ 0 and ("i"k)1/21(W;k' Xj>1 ~ 2'IT/Lj for every i, k, j, then N is 
stable. 

PROOF. Let W = L7'=ln aiW; be smooth on N. Corollary 3.3 implies that 

8(2)(W) ~ L f bik (lidail12 + Ildak l1 2) - (W;k' aidak - akdai) d£n. 
i<k N 

Fix i < k with bik = 1. Then the corresponding term in the above sum is equal to 
11 

(*) L f (~,dai)2+ (~,dak)2_ (W;k,~)(Xj,aidak-akdai)d£n. 
j=l N 

Fixing j we infer that, since the action of G commutes with the flow of X = Xi' 
the set P of orbits of X has a smooth manifold structure and the map q, which 
associates the trajectory of p with each pEN is a submersion. Fix a riemannian 
metric on P. We next show that the jacobian Jq, of q, is constant on q,-I{ q} for 
each q E P. Fix v E "n-l TiP) with IIvll = 1, and for p E q,-I{ q} let v*(p) be the 
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horizontal lift of v to p. Then J4>(p) = IIv*(p)II- I. Denoting the flow of X by CPt we 
have CPt-( v* 1\ X) = (cpt_v*) 1\ X = v* 1\ X because 4>*CPt-( v*) = v and CPt_ X = X. 
From this we infer that, since div X = 0, IIv* 1\ XII is constant on 4>-1{ q}. Conse-
quently, IIv*1I = IIv* 1\ XII II XII-I is also constant. 

Denoting (J4»-I(q) = J4>(p)-1 for 4>(p) = q we use the coarea formula [F, 
3.2.12] to write the term in (*) corresponding to j in the form 
fp I(q)(J4»-I( q) d.Jlt'n-lq, where for q E P 

I( q) = 1 (X, dlt) 2 + (X, dlik) 2 - Cik( X, liidlik - likdlii) d.Jlt'l, 
<1>-1 { q} 

and CU; = <W;k' X). Finally, ICikl ~ 2'TT/Lj by hypothesis, hence Lemma 4.4 implies 
I(q) ~ O. 

4.6. Assume the following: 
(i) There exist mutually orthogonal G-invariant distributions AI"'" AIL on N 

such that for each i = 1, ... , il and each k with W;k =1= 0 (see 3.3) there exists j(i, k) 
such that W;k E Aj(i.k)' 

(ii) For each i the function j(i, .) is one-to-one. 
(iii) For each j = 1, ... ,JL there exists an invariant orthonormal basis 

{ X/I' ... , XjILJ } of A j such that each vector field JSI has compact orbits. Denote by 
L/I the length of the orbits of JSI' 

THEOREM. If Hv ~ 0 and 1<W;k' Xj(i.k),1) I ~ 2'TT/Lj(i.k).1 for every i, k, I, then N is 
stable. 

PROOF. Let W = L7'--;.n aiW; be smooth on N. Then by Corollary 3.3 

8(2)(W) ~ L L f (Xj(i.k).I' da i) 2 + (JS(i.k).I, da k) 2 
i<k I N 

- Cikl( Xj(i.k).I' aida k - akdai) d.Jlt'n, 

where cikl = <W;k' JS(i.k),1)' which is nonnegative by an argument analogous to the 
second part of the proof of 4.5. 

4.7. LEMMA. Fix i, k with W;k =1= O. There exists a torus TI of dimension I which acts 
smoothly and freely on the right on N, thereby inducing on N the structure of a principal 
fibre bundle with projection 4>: N ..... N /TI. Furthermore, 

(i) the action of Tlon N commutes with the action of G, and 
(ii) for each pEN the orbit (p )T I is equal to the closure of the orbit of W;k through 

p. 

PROOF. Denote H = G n {g: g(po) = Po} and II: G ..... N, II(g) = g(po)· 
Choose an Ad(H)-invariant subspace V of Te(G) of dimension n such that V n 
Te(H) = {O} and denote by W* the left invariant vector field on G such that 
II*(W*) = W;k' W*(e) E V. G-invariance of W;k implies that Ad(H) fixes W*, 
hence that H lies in the centralizer of the one-parameter subgroup exp t W *. The 
closure in G of this one-parameter subgroup is thus a torus T~. containing H in its 
centralizer. The component of T~. n H containing e is a torus T~. and so 
T x - TI X TXl W* - W* w*· 
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Next we observe that because H lies in the centralizer of Tiv., the action of T~ .• 
on G by right translation induces a right action on N which is II-equivariant and 
commutes with the action of G. The isotropy groups of this action of Tiv. are thus 
all equal to the finite group Tiv. n H. Consequently, the action of Tiv. induces an 
action of TI on N which is without fixed points, hence induces a principal fibration 
$: N ~ NITI. 

Finally, since II(closure S) = closure II(S) for S C G, we conclude that II(T~ .• ) 
= (Po)T' is the closure of the orbit of U;;k through Po; inasmuch as U;;" is 
G-invariant, the closure of the orbit through g(po) is g(pO)TI. 

4.8. For i < k such that U;;k =1= 0 denote the associated torus of 4.7 by TI'k and by 
{Xi!.:.!"'" XikJ,k} a basis of the integer lattice exp-1{ e} of Tlik. We also denote by 
Xi!.:.) the fundamental vector field of N corresponding to Xik ,). Xik ,) is G-invariant 
because the actions of G and Tlik commute. Defining Vi as in 3.3 we also denote by 
Ai" and J.ti" respectively the infimum and supremum of 

( 
lik lik ) 

Ilvll:v= LU)Xik ,), Llu)1 2 =1. 
J=l )=1 

THEOREM. If Hv ;? 0 and (vh)1/211U;;kll ~ 27TA iklJ.t7k for every i, k, then N is 
stable. 

PROOF. The proof is an extension of the proof of Theorem 4.5. Fix i < k with 
bik = 1 and write U;;k = Lj~l U%Xik ,)' Denote by I Ie the norm on the tangent 
spaces of the orbits of TI'k induced by the inner product which makes the vector 
fields Xik", j = 1, ... , lik' orthonormal. Then Aikl Ie ~ II II ~ J.tikl Ie on these 
tangent spaces, hence IIdaill 2 ;? J.t-}LJ~l (Xik ,), da,/. Thus 

f II dai 112 + II dak 112 - ( U;;", aidak - akdai) dy'f'n 
N 

I 

;? t (II Xik,)II/J.tikt f II Xik,)r\ (Xik ')' dair + (Xik ')' dakr) 
)=1 N 

- W~(J.tiklll Xik,J)\ Xik ')' aidak - akdai) dy'f'n, 

each term of which is nonnegative by an argument analogous to one used in the 
proof of 4.5 because the length of the orbits of Xik ,) is equal to II Xik)1 and 
Iw,~1 ~ lU;;de ~ AikllU;;kll ~ 27TJ.ti;' 

4.9. Write the metric tensor a of M as a = ah + au, where a"a,1/) = 0 if ~ or 1/ is 
horizontal and aha, 1/) = 0 if ~ or 1/ is vertical. For c > 0 denote ac = ah + ca". 

THEOREM. Assume Hv ;? O. Then there exists c s E (0, 00 1 such that N is stable for 
c ~ Cs (c < c, if Cs = 00) and N is not stable for c > cs ' Furthermore, Cs = 00 and if 
and only if the distribution of normal planes to the orbits is involutiue along N (see 4.2). 

PROOF. It is clear from Corollary 3.3 that the integrand of a(2)(W) is a continuous 
decreasing function of c. Thus the set of c for which N is stable is a nonempty 
interval. 
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In case the distribution of normal planes to the orbits is involutive along N, 
stability for all c is implied by 4.2. Otherwise, if there exist orthonormal normal 
vector fields WI' W2 on N such that the projection Wl2 of [WI' W2 ] on N is not 0, 
then we choose 0: N ~ Sl such that (WI2' dO) has positive values, choose r ~ 0 so 
that 

and consider the variation W = r(cosOWI + sinOW2 ). 

5. Examples. We consider the stability of various subgroups of the unitary group 
U(n). 

Let U(n) have the bi-invariant metric induced from the standard hermitian inner 
product of jlt(n, C) by the inclusion of U(n) in jlt(n, C). Denote by Eap the n X n 
matrix with 1 in row a, column /3, and 0 elsewhere. Then the set !fin of matrices 

with 1 ~ a < /3 ~ nand 1 ~ Y ~ n forms an orthonormal basis of TJ(U(n». We 
also denote by laP' Jap and Dy the extensions of these to left invariant vector fields 
on U( n). Finally, denote Dap = 2-1/ 2 ( Da - Dp). One verifies that for a l '* a 2 

[la,p, la2P] = 2-1/21ala2 = [Ja,p, Ja2P ] , 

[la,p, Ja2P ] = -2-1/2Jala2' [laP' Jap ] = Dp - Da, 

[laP' Da] = Jap = -[ laP' Dp], [Jap , Da] = -lap = -[ Jap , Dp]; 

all other brackets of members of the above basis are zero. 
We will apply our theory as follows: M and N will be subgroups of U( n) with N 

acting on M by left multiplication, hence T(N).L will have an orthonormal basis 
{ WI' ... , Wp } consisting of left invariant vector fields. However, each W; will not in 
general be horizontal off N because the orbits of N are permuted by right 
translation by elements of M. Recalling 3.3 we compute the N-invariant vector fields 
W;k as follows: Let lV; be the right invariant vector field such that lV;(l) = W;(l); 
lV; is clearly horizontal. Further, [lV;, Wk](l) = -[W;, Wd(l), hence W;k is the 
projection on N of -[W;, Wk ]. 

5.1. THEOREM. Let 1 ~ kl < k2 < ... < k p ~ n be integers and embed 

as a subgroup of U(n) is one of the standard ways. Then N is stable. In particular, a 
maximal torus of U(n) is stable. 

PROOF. We assume T(N) to be spanned by the set !fI(N) of lap, Jap, Dy with 
k,._1 < a < /3 ~ k,., p. = 1, ... , p (ko = 0), 1 ~ Y ~ k p • T(N).L is thus spanned by 
!fI(N).L = !fiN - !fI(N). 
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Denoting by P the orthogonal projection onto T(N) we have for members of 
fA(N) 1-

all other members of [fA(N) 1- , fA(N) 1-] project to zero. Further, the orbits of laP 
and laP have length 2.,,/i while those of Dy have length 2.". We can therefore apply 
Theorem 4.6 with Al equal to the span of {D1, ••• , Dk ,} and Ai' j > 1, equal to the 
span of one of the laP or lap E fA(N). 

REMARK. It is asserted in [T] that U( k) does not homologically minimize area in 
U( n), but I am unable to follow the proof. The above result is consistent with such a 
conjecture; however, it follows as in the proof of Lemma 4.4 that U(l) minimizes 
length in its homology class in U(n) for each n. 

5.2. THEOREM. Let E1"'" E. be positive integers with L;=12'~ ~ n and embed 

N = SU{2El) X ... XSU{2E.) 

as a subgroup of U( n) in one of the standard ways. Then N is stable. 

PROOF. Denote kp. = LX=12E\ I-' = 1, ... , P, ko = O. We can assume T(N) to be 
spanned by the set of laP' laP' Da,a+1 with kp.-1 < a < f3 ~ kp., I-' = 1, ... , P. The 
remaining laP' laP' together with an orthonormal basis of the orthogonal comple-
ment in the span of {D1, ... ,Dn} of the span of {Dy,y+1 E T(N)}, form an 
orthonormal basis fA(N) 1- of T(N) 1- • 

Denoting by P the orthogonal projection onto T(N) we have for members of 
fA(N) 1-

P [lalP' la2P] = 2-l/2Iala2 = P [lalP' la2P] , 

p[ lalP' la2P] = 2-1/2lala2' kp._l < a l < a2 ~ kp.; 

p[ lap,Jap] = p{ Dp - Da); 

all other members of [fA( N) 1- , ~(N) 1- ] project to zero. 
We will apply Theorem 4.6 with Al equal to the span of {Dy,y+l E T(N)} and 

Ai' j> 1, equal to the span of one of the lap or laP E T(N). We also define an 
orthonormal basis {Xp.;>.: I-' = 1, ... , P, 1 ~ A < 2E~} of Al by XI';>' = Dk~_l +;>.,k~_l +;>'+1 
for A odd, and for A even 

2,.-1 

XI';>' = 2-,./2 L Ep.ly(Dk~_1+2Y-1 + Dk~_1+2Y)' 
y=1 

A 1= -2 ' 

where for each 1-', Ep.ly is the entry in row I, column y of the (2,.-1 - 1) X 2,.-1 
matrix ME defined inductively as follows: M2 = [1 -1] and, assuming Mm to be 

" 
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defined with m ~ 2, 

Mm 1 -Mm . 
-1··· -1 

The orbits of laP' lap and Xp'x for A odd have length 2'1T{i; those of Xp'x for A 
even have length 2'1T2E~/2. Further, for k",o-l < a ~ k",o' kp.,_l < fJ ~ k"" with 
110 < 111' 

= 2-1/ 2 or 0, 11 E {110, 111}, A odd, 

= 2-·~/2 or 0, 11 E {11o, 111}' A even. 

In case kp.o-1 < a ~ kp.o and k p < fJ the same is true with {l1o,l1d replaced by 
{110}. Finally, in case k p < a < fJ ~ n, P(Dp - Da) = 0. Thus the requirements of 
Theorem 4.6 are satisfied; we conclude that N is stable. 

REMARKS. Our theory is inconclusive when applied to subgroups of SU( n) other 
than those listed in the Theorem. For example, in case N = SU(3) it is not possible 
to find an orthonormal basis {Xl' X2} of the span Al of {D12' D23 } such that the 
projections of Dp - Da = [laP' lap], a ~ 3, fJ> 3, each have components in the Xx 
directions, A = 1,2, which satisfy the requirements of Theorem 4.6. 

One can use the bi-invariant 3-form gee {trace ABC} to show that SU(2) is 
homologically area minimizing in SU( n ) [T]. 

5.3. THEOREM. Let 1 ~ k1 < k2 < ... < k p ~ n be integers and embed 

N = SO(k1) X SO(,<:2 - k l ) X ... XSO(k p - k p - 1) 

as a subgroup of U( n) is one of the standard ways. Then N is stable. 

The proof is analogous to that of Theorem S.l. 
REMARK. It is shown in [T] that SO(3) is homologically area minimizing in SO( 4). 
5.4. One of the motives for our undertaking the investigation in this paper was the 

explanation of the following example in terms of the geometry of the normal bundle: 
Let M = S3 = C2 n {(Zl' z2): IZl12 + IZ212 = 1} and G = SI = C n {A: IAI = 1} 

acting on S3 by scalar multiplication. Then the orbits of G are great circles (so that 
v = 2'1T) and are all not stable. 

It is convenient to identify S3 with 

SU(2) = GL(2, C) n {[ z~ 
-Z2 

by means of the diffeomorphism which projects A E SU(2) onto its first row. Thus 
the metric on S3 corresponds to one-half that on SU(2). 

The action of G on SU(2) is represented by left multiplication by the one-parame-
ter subgroup N of diagonal matrices diag(A, X), A E Sl. D12 is the unit tangent to 
N" 112 and 112 are orthogonal to N, and [112' 112 ] = -2-1/ 2D12. Thus 
11[112 , 112]1I£1(N) = 4'1T > 2'1T and Theorem 4.6 does not apply. 
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Returning to S3 we have N = Sl X {OJ with unit tangent X( A, 0) = (iA,O). 
Normalized vector fields corresponding to I l2 , J l2 are respectively W1(A,0) = 
(0, -A), W2(A,0) = (0, iA); Wl2 = -[WI' W2] = 2X. A geometrically obvious length 
decreasing variation of N is given by W( A, 0) = (0, w), where 0 '* WEe is fixed. 
For example, letting w = -1 we have W(A,O) = COSAW1 + sin AW2 • It follows from 
Corollary 3.3 that 

3(2)(W) = iN lidO 112 - (2X, dO) d£l = -2'17; 

here O(A,O) = A. 
The subgroup N of SU(2) is a maximal torus of SU(2). More generally, we have 

the following: 

5.4.1. THEOREM. A maximal torus of SU(n) is not stable. 

PROOF. We consider the maximal torus Tconsisting of the set of diagonal matrices 
with ath entry expiA .. , where Al + ... +An = O. We also embed SU(2) in SU(n) in 
the usual way so that T[(SU(2» is spanned by {Il2(l), JdI), DdI)} c T[(SU(n». 

Defining Nand 0: N ~ Sl as above, O(diag(A).» = A, we use the product 
structure of T to extend 0 smoothly to T so that (Dy ,y+1' dO) = 0 for y > 1; define 
W = cosOIl2 + sinOJ12. Clearly, IIdOl1 = lidO 1.9'11 where .9' is the 2-dimensional 
distribution spanned by {Dl2 ,D23 }, and lidO 1.9'11 2 = 1(Dl2' dO? = 1 because 
(D23' dO) = O. Using Corollary 3.3 with WI = 112 , W2 = J12 , W12 = 21/2D12 we 
conclude that 

3(2)(W) = iT IidOl1 2 - 21/2(D12' dO) d£n-1 = _~£n-1(T). 

Finally, we discuss a simple example illustrating Theorem 4.9 which also demon-
strates the need for the factor (p;P k )1/2 in Theorem 4.5. Let N denote the one-
parameter subgroup exp tIl2 of SU(2) c U(2), acting on U(2) by left multiplication, 
and for c > 0 define the N-invariant metric ae = ah + cav on U(2) as in 4.9. 

5.4.2. THEOREM. If c ~ 1. then N is stable in U(2); if c > ·L then N is not stable in 
SU(2). 

PROOF. Let WI = J12 , W2 = Dl2, W3 = 2-1/ 2(D1 + D2). Then W13 = »'23 = 0, 
Wl2 = 21/ 2Il2 . Assume c> i. Define 0: N ~ Sl so that O(exptWl2 ) = eit and 
W = cosOWl + sinOW2. Note that W is tangent to SU(2). Denoting the norms with 
respect to ae by II lie we have IIIdie = c1/2, £/(N) = 2'IT(2c)1/2 and, since 
(Il2' dO) = 2-1/2, IIdOIl e = (2C)-1/2. Applying Corollary 3.3 we obtain 3(2)(W) = 
«2C)-1 - 1)2'IT(2c)1/2 < O. 

Conversely, if c ~ 1-, then applying Theorem 4.5 with X = c-1/21I2 and PI = P2 
= 1, P3 = 0 we have I(Wl2 , X)el = (2C)1/2 ~ (2ct1/2 = 2'IT/£/(N), hence N is 
stable. 

On the other hand, if we define W2 = D1 and W3 = D2, then W23 = 0 and 
W12 = Il2 = - Wl3 • Seeking to apply Theorem 4.5 with X as above, PI = 2 and 
P2 = P3 = 1 we have (P 1P2)1/2i(Wl2 , X)el = (P1P3)1/21(W13 , X)cl = (2C)1/2, which is 
not greater than 2'IT/£1(N) if and only if 0 < c ~ !. 
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