On the ampleness of homogeneous vector bundles
Author:
Dennis M. Snow
Journal:
Trans. Amer. Math. Soc. 294 (1986), 585-594
MSC:
Primary 32M10; Secondary 14M17, 32L15
DOI:
https://doi.org/10.1090/S0002-9947-1986-0825723-9
MathSciNet review:
825723
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A formula is proved which expresses the ampleness of a homogeneous vector bundle over in terms of the distance of the weights of the representation of
to certain dominant weights of
.
- [1] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
- [2] Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248. MR 89473, https://doi.org/10.2307/1969996
- [3] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
- [4] Edward Cline, Brian Parshall, and Leonard Scott, Induced modules and affine quotients, Math. Ann. 230 (1977), no. 1, 1–14. MR 470094, https://doi.org/10.1007/BF01420572
- [5] Norman Goldstein, Ampleness and connectedness in complex 𝐺/𝑃, Trans. Amer. Math. Soc. 274 (1982), no. 1, 361–373. MR 670938, https://doi.org/10.1090/S0002-9947-1982-0670938-2
- [6] Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 193092
- [7] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773
- [8] J.-P. Serre, Représentations linéaires et espaces homogènes Kählerians des groupes de Lie compacts (d'après Borel et Weil), Sém. Bourbaki, Exposé 100, May 1954, Benjamin, New York, 1966.
- [9] Andrew John Sommese, Submanifolds of Abelian varieties, Math. Ann. 233 (1978), no. 3, 229–256. MR 466647, https://doi.org/10.1007/BF01405353
- [10] Andrew John Sommese, A convexity theorem, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 497–505. MR 713275
- [11] Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 430094, https://doi.org/10.1007/BF01390010
Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M10, 14M17, 32L15
Retrieve articles in all journals with MSC: 32M10, 14M17, 32L15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0825723-9
Article copyright:
© Copyright 1986
American Mathematical Society