Functional equations for character series associated with $n\times n$ matrices
HTML articles powered by AMS MathViewer
- by Edward Formanek
- Trans. Amer. Math. Soc. 294 (1986), 647-663
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825728-8
- PDF | Request permission
Abstract:
Let $A$ be either the ring of invariants or the trace ring of $r$ generic $n \times n$ matrices. Then $A$ has a character series $\chi (A)$ which is a symmetric rational function of commuting variables ${x_1}, \ldots ,{x_r}$. The main result is that if $r \geq {n^2}$, then $\chi (A)$ satisfies the functional equation \[ \chi (A)(x_1^{ - 1}, \ldots ,x_r^{ - 1}) = {( - 1)^d}{({x_1} \cdots {x_r})^{{n^2}}}\chi (A)({x_1}, \ldots ,{x_r})\], where $d$ is the Krull dimension of $A$.References
- Edward Formanek, Invariants and the ring of generic matrices, J. Algebra 89 (1984), no. 1, 178–223. MR 748233, DOI 10.1016/0021-8693(84)90240-0
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Lieven Le Bruyn, The functional equation for Poincaré series of trace rings of generic $2\times 2$ matrices, Israel J. Math. 52 (1985), no. 4, 355–360. MR 829364, DOI 10.1007/BF02774086
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- M. Pavaman Murthy, A note on factorial rings, Arch. Math. (Basel) 15 (1964), 418–420. MR 173695, DOI 10.1007/BF01589225
- C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381. MR 419491, DOI 10.1016/0001-8708(76)90027-X
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR 0447428, DOI 10.1007/BFb0095644
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 647-663
- MSC: Primary 15A72; Secondary 16A38
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825728-8
- MathSciNet review: 825728