## Functional equations for character series associated with $n\times n$ matrices

HTML articles powered by AMS MathViewer

- by Edward Formanek PDF
- Trans. Amer. Math. Soc.
**294**(1986), 647-663 Request permission

## Abstract:

Let $A$ be either the ring of invariants or the trace ring of $r$ generic $n \times n$ matrices. Then $A$ has a character series $\chi (A)$ which is a symmetric rational function of commuting variables ${x_1}, \ldots ,{x_r}$. The main result is that if $r \geq {n^2}$, then $\chi (A)$ satisfies the functional equation \[ \chi (A)(x_1^{ - 1}, \ldots ,x_r^{ - 1}) = {( - 1)^d}{({x_1} \cdots {x_r})^{{n^2}}}\chi (A)({x_1}, \ldots ,{x_r})\], where $d$ is the Krull dimension of $A$.## References

- Edward Formanek,
*Invariants and the ring of generic matrices*, J. Algebra**89**(1984), no. 1, 178–223. MR**748233**, DOI 10.1016/0021-8693(84)90240-0 - Melvin Hochster and Joel L. Roberts,
*Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay*, Advances in Math.**13**(1974), 115–175. MR**347810**, DOI 10.1016/0001-8708(74)90067-X - Gordon James and Adalbert Kerber,
*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144** - Lieven Le Bruyn,
*The functional equation for Poincaré series of trace rings of generic $2\times 2$ matrices*, Israel J. Math.**52**(1985), no. 4, 355–360. MR**829364**, DOI 10.1007/BF02774086 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR**553598** - M. Pavaman Murthy,
*A note on factorial rings*, Arch. Math. (Basel)**15**(1964), 418–420. MR**173695**, DOI 10.1007/BF01589225 - C. Procesi,
*The invariant theory of $n\times n$ matrices*, Advances in Math.**19**(1976), no. 3, 306–381. MR**419491**, DOI 10.1016/0001-8708(76)90027-X - Louis Halle Rowen,
*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061** - T. A. Springer,
*Invariant theory*, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR**0447428**, DOI 10.1007/BFb0095644 - Richard P. Stanley,
*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**485835**, DOI 10.1016/0001-8708(78)90045-2

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**294**(1986), 647-663 - MSC: Primary 15A72; Secondary 16A38
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825728-8
- MathSciNet review: 825728