## Left separated spaces with point-countable bases

HTML articles powered by AMS MathViewer

- by William G. Fleissner PDF
- Trans. Amer. Math. Soc.
**294**(1986), 665-677 Request permission

## Abstract:

Theorem 2.2 lists properties equivalent to left separated spaces in the class of ${T_1}$ with point-countable bases, with examples preventing plausible additions to this list. For example, $X$ is left iff $X$ is $\sigma$-weakly separated or $X$ has a closure preserving cover by countable closed sets, but $X$ is left separated does not imply that $X$ is $\sigma$-discrete. Theorem 2.2 is used to show that the following reflection property holds after properly collapsing a supercompact cardinal to ${\omega _2}$: If $X$ is a not $\sigma$-discrete metric space, then $X$ has a not $\sigma$-discrete subspace of cardinality less than ${\omega _2}$. Similar reflection properties are shown true in some models and false in others.## References

- C. E. Aull,
*Topological spaces with a $\sigma$-point finite base*, Proc. Amer. Math. Soc.**29**(1971), 411–416. MR**281154**, DOI 10.1090/S0002-9939-1971-0281154-9 - Zoltán Balogh and Heikki Junnila,
*Totally analytic spaces under $V=L$*, Proc. Amer. Math. Soc.**87**(1983), no. 3, 519–527. MR**684650**, DOI 10.1090/S0002-9939-1983-0684650-3 - James E. Baumgartner,
*Applications of the proper forcing axiom*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR**776640** - A. R. D. Mathias (ed.),
*Surveys in set theory*, London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983. MR**823774**, DOI 10.1017/CBO9780511758867 - J. Baumgartner, J. Malitz, and W. Reinhardt,
*Embedding trees in the rationals*, Proc. Nat. Acad. Sci. U.S.A.**67**(1970), 1748–1753. MR**314621**, DOI 10.1073/pnas.67.4.1748 - Keith J. Devlin and Saharon Shelah,
*A weak version of $\diamondsuit$ which follows from $2^{\aleph _{0}}<2^{\aleph _{1}}$*, Israel J. Math.**29**(1978), no. 2-3, 239–247. MR**469756**, DOI 10.1007/BF02762012 - Kenneth Kunen and Jerry E. Vaughan (eds.),
*Handbook of set-theoretic topology*, North-Holland Publishing Co., Amsterdam, 1984. MR**776619** - R. Engelking and D. Lutzer,
*Paracompactness in ordered spaces*, Fund. Math.**94**(1977), no. 1, 49–58. MR**428278**, DOI 10.4064/fm-94-1-25-33 - William G. Fleissner,
*An axiom for nonseparable Borel theory*, Trans. Amer. Math. Soc.**251**(1979), 309–328. MR**531982**, DOI 10.1090/S0002-9947-1979-0531982-9 - William G. Fleissner,
*Homomorphism axioms and lynxes*, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 79–97. MR**763895**, DOI 10.1090/conm/031/763895 - William G. Fleissner,
*Separation properties in Moore spaces*, Fund. Math.**98**(1978), no. 3, 279–286. MR**478111**, DOI 10.4064/fm-98-3-279-286 - William G. Fleissner,
*On $\lambda$ collection Hausdorff spaces*, Topology Proc.**2**(1977), no. 2, 445–456 (1978). MR**540621** - G. Fodor,
*Proof of a conjecture of P. Erdös*, Acta Sci. Math. (Szeged)**14**(1952), 219–227. MR**59334** - D. H. Fremlin,
*Measure-additive coverings and measurable selectors*, Dissertationes Math. (Rozprawy Mat.)**260**(1987), 116. MR**928693** - R. W. Hansell,
*Point-countable Souslin-additive families and $\sigma$-discrete reduction*, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 254–260. MR**698421** - A. Kanamori and M. Magidor,
*The evolution of large cardinal axioms in set theory*, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 99–275. MR**520190** - David W. Kueker,
*Countable approximations and Löwenheim-Skolem theorems*, Ann. Math. Logic**11**(1977), no. 1, 57–103. MR**457191**, DOI 10.1016/0003-4843(77)90010-9 - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR**597342** - E. C. Milner and S. Shelah,
*Some theorems on transversals*, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1115–1126. MR**0376358**
A. Miščenko, - Roman Pol,
*Note on decompositions of metrizable spaces. II*, Fund. Math.**100**(1978), no. 2, 129–143. MR**494011**, DOI 10.4064/fm-100-2-129-143 - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955** - Saharon Shelah,
*Remarks on $\lambda$-collectionwise Hausdorff spaces*, Topology Proc.**2**(1977), no. 2, 583–592 (1978). MR**540629** - Franklin D. Tall,
*Normality versus collectionwise normality*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 685–732. MR**776634**
—, - Stevo B. Todorčević,
*Some consequences of $\textrm {MA}+\neg \textrm {wKH}$*, Topology Appl.**12**(1981), no. 2, 187–202. MR**612015**, DOI 10.1016/0166-8641(81)90020-1 - S. Todorčević,
*Trees and linearly ordered sets*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 235–293. MR**776625**
N. Williams,

*Spaces with point countable base*, Dokl. Akad. Nauk SSSR

**144**(1962), 985-988=Soviet Math. Dokl.

**3**(1962), 855-858.

*Some reflections on collectionwise normality*(to appear).

*Combinatorial set theory*, North-Holland, Amsterdam, 1977.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**294**(1986), 665-677 - MSC: Primary 03E35; Secondary 03E55, 54D18, 54E18
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825729-X
- MathSciNet review: 825729