Left separated spaces with point-countable bases
HTML articles powered by AMS MathViewer
- by William G. Fleissner PDF
- Trans. Amer. Math. Soc. 294 (1986), 665-677 Request permission
Abstract:
Theorem 2.2 lists properties equivalent to left separated spaces in the class of ${T_1}$ with point-countable bases, with examples preventing plausible additions to this list. For example, $X$ is left iff $X$ is $\sigma$-weakly separated or $X$ has a closure preserving cover by countable closed sets, but $X$ is left separated does not imply that $X$ is $\sigma$-discrete. Theorem 2.2 is used to show that the following reflection property holds after properly collapsing a supercompact cardinal to ${\omega _2}$: If $X$ is a not $\sigma$-discrete metric space, then $X$ has a not $\sigma$-discrete subspace of cardinality less than ${\omega _2}$. Similar reflection properties are shown true in some models and false in others.References
- C. E. Aull, Topological spaces with a $\sigma$-point finite base, Proc. Amer. Math. Soc. 29 (1971), 411–416. MR 281154, DOI 10.1090/S0002-9939-1971-0281154-9
- Zoltán Balogh and Heikki Junnila, Totally analytic spaces under $V=L$, Proc. Amer. Math. Soc. 87 (1983), no. 3, 519–527. MR 684650, DOI 10.1090/S0002-9939-1983-0684650-3
- James E. Baumgartner, Applications of the proper forcing axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR 776640
- A. R. D. Mathias (ed.), Surveys in set theory, London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983. MR 823774, DOI 10.1017/CBO9780511758867
- J. Baumgartner, J. Malitz, and W. Reinhardt, Embedding trees in the rationals, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1748–1753. MR 314621, DOI 10.1073/pnas.67.4.1748
- Keith J. Devlin and Saharon Shelah, A weak version of $\diamondsuit$ which follows from $2^{\aleph _{0}}<2^{\aleph _{1}}$, Israel J. Math. 29 (1978), no. 2-3, 239–247. MR 469756, DOI 10.1007/BF02762012
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1977), no. 1, 49–58. MR 428278, DOI 10.4064/fm-94-1-25-33
- William G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309–328. MR 531982, DOI 10.1090/S0002-9947-1979-0531982-9
- William G. Fleissner, Homomorphism axioms and lynxes, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 79–97. MR 763895, DOI 10.1090/conm/031/763895
- William G. Fleissner, Separation properties in Moore spaces, Fund. Math. 98 (1978), no. 3, 279–286. MR 478111, DOI 10.4064/fm-98-3-279-286
- William G. Fleissner, On $\lambda$ collection Hausdorff spaces, Topology Proc. 2 (1977), no. 2, 445–456 (1978). MR 540621
- G. Fodor, Proof of a conjecture of P. Erdös, Acta Sci. Math. (Szeged) 14 (1952), 219–227. MR 59334
- D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. (Rozprawy Mat.) 260 (1987), 116. MR 928693
- R. W. Hansell, Point-countable Souslin-additive families and $\sigma$-discrete reduction, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 254–260. MR 698421
- A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 99–275. MR 520190
- David W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), no. 1, 57–103. MR 457191, DOI 10.1016/0003-4843(77)90010-9
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- E. C. Milner and S. Shelah, Some theorems on transversals, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1115–1126. MR 0376358 A. Miščenko, Spaces with point countable base, Dokl. Akad. Nauk SSSR 144 (1962), 985-988=Soviet Math. Dokl. 3 (1962), 855-858.
- Roman Pol, Note on decompositions of metrizable spaces. II, Fund. Math. 100 (1978), no. 2, 129–143. MR 494011, DOI 10.4064/fm-100-2-129-143
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- Saharon Shelah, Remarks on $\lambda$-collectionwise Hausdorff spaces, Topology Proc. 2 (1977), no. 2, 583–592 (1978). MR 540629
- Franklin D. Tall, Normality versus collectionwise normality, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 685–732. MR 776634 —, Some reflections on collectionwise normality (to appear).
- Stevo B. Todorčević, Some consequences of $\textrm {MA}+\neg \textrm {wKH}$, Topology Appl. 12 (1981), no. 2, 187–202. MR 612015, DOI 10.1016/0166-8641(81)90020-1
- S. Todorčević, Trees and linearly ordered sets, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 235–293. MR 776625 N. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.
Additional Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 665-677
- MSC: Primary 03E35; Secondary 03E55, 54D18, 54E18
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825729-X
- MathSciNet review: 825729