Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Trellises formed by stable and unstable manifolds in the plane
HTML articles powered by AMS MathViewer

by Robert W. Easton PDF
Trans. Amer. Math. Soc. 294 (1986), 719-732 Request permission

Abstract:

A trellis is the figure formed by the stable and unstable manifolds of a hyperbolic periodic point of a diffeomorphism of a $2$-manifold. This paper describes and classifies some trellises. The set of homoclinic points is linearly ordered as a subset of the stable manifold and again as a subset of the unstable manifold. Each homoclinic point is assigned a type number which is constant on its orbit. Combinatorial properties of trellises are studied using type numbers and the pair of linear orderings. Trellises are important because their closures in some cases are strange attractors and in other cases are ergodic zones.
References
  • Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR 0257315
  • Marcy Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121 (1986), no. 1, 29–39. MR 815029
  • Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
  • Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63–80. MR 0182020
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F15
  • Retrieve articles in all journals with MSC: 58F15
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 294 (1986), 719-732
  • MSC: Primary 58F15
  • DOI: https://doi.org/10.1090/S0002-9947-1986-0825732-X
  • MathSciNet review: 825732