Algebraic meridians of knot groups
HTML articles powered by AMS MathViewer
- by Chichen M. Tsau
- Trans. Amer. Math. Soc. 294 (1986), 733-747
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825733-1
- PDF | Request permission
Abstract:
We propose the conjecture that every automorphism of a knot group preserves the meridian up to inverse and conjugation. We establish the conjecture for all composite knots, all torus knots, most cable knots, and at most one exception for hyperbolic knots; moreover we prove that the Property P Conjecture implies our conjecture. We also investigate hyperbolic knots in more detail, and give an example of figure-eight knot group and its automorphisms.References
- E. M. Brown, Unknotting in $M^{2}\times I$, Trans. Amer. Math. Soc. 123 (1966), 480–505. MR 198482, DOI 10.1090/S0002-9947-1966-0198482-0
- C. D. Feustel and Wilbur Whitten, Groups and complements of knots, Canadian J. Math. 30 (1978), no. 6, 1284–1295. MR 511562, DOI 10.4153/CJM-1978-105-0
- Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
- R. A. Litherland, Surgery on knots in solid tori. II, J. London Math. Soc. (2) 22 (1980), no. 3, 559–569. MR 596334, DOI 10.1112/jlms/s2-22.3.559
- Wilhelm Magnus, Untersuchungen über einige unendliche diskontinuierliche Gruppen, Math. Ann. 105 (1931), no. 1, 52–74 (German). MR 1512704, DOI 10.1007/BF01455808
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288. MR 412416, DOI 10.1017/S0305004100051094 —, Automorphisms of excellent link groups, preprint.
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI 10.1007/BF02392437 O. Schreier, Über die Gruppen ${A^a}{B^b} = 1$, Abh. Math. Sem. Univ. Hamburg 3 (1923), 167-169.
- R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217–231. MR 278287, DOI 10.1090/S0002-9947-1971-0278287-4 W. Thurston, The geometry and topology of $3$-manifolds, Lecture notes, Princeton Univ.
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Friedhelm Waldhausen, Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505–517 (German). MR 236930, DOI 10.1016/0040-9383(67)90008-0
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 733-747
- MSC: Primary 57M25; Secondary 57M05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825733-1
- MathSciNet review: 825733