$\Omega$-stable limit set explosions
HTML articles powered by AMS MathViewer
- by S. E. Patterson
- Trans. Amer. Math. Soc. 294 (1986), 775-798
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825737-9
- PDF | Request permission
Abstract:
Certain diffeomorphisms of two-dimensional manifolds are considered. These diffeomorphisms have a finite hyperbolic limit set which contains a limit set cycle. The only nontransverse cycle connection in these cycles is a complete coincidence of one component of the unstable manifold of one periodic point with one component of the stable manifold of some other periodic point. A one-parameter family of diffeomorphisms containing the original diffeomorphism is described. It is shown that for parameter values arbitrarily near the parameter value corresponding to the original map these diffeomorphisms have a much enlarged limit set and are $\Omega$-stable.References
- Alan Dankner, Axiom A dynamical systems, cycles and stability, Topology 19 (1980), no. 2, 163–177. MR 572581, DOI 10.1016/0040-9383(80)90004-X
- Sheldon E. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125–150. MR 295388, DOI 10.1090/S0002-9947-1972-0295388-6
- S. Newhouse and J. Palis, Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 293–301. MR 0339284
- S. Newhouse and J. Palis, Cycles and bifurcation theory, Trois études en dynamique qualitative, Astérisque, No. 31, Soc. Math. France, Paris, 1976, pp. 43–140. MR 0516408
- J. Palis, A note on $\Omega$-stability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 221–222. MR 0270387
- Charles C. Pugh, Russell B. Walker, and F. Wesley Wilson Jr., On Morse-Smale approximations–a counterexample, J. Differential Equations 23 (1977), no. 1, 173–182. MR 436218, DOI 10.1016/0022-0396(77)90140-1
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- S. Smale, The $\Omega$-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 289–297. MR 0271971
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 775-798
- MSC: Primary 58F10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825737-9
- MathSciNet review: 825737