Jones polynomials of alternating links
HTML articles powered by AMS MathViewer
- by Kunio Murasugi
- Trans. Amer. Math. Soc. 295 (1986), 147-174
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831194-9
- PDF | Request permission
Abstract:
Let ${J_K}(t) = {a_r}{t^r} + \cdots + {a_s}{t^s},r > s$, be the Jones polynomial of a knot $K$ in ${S^3}$. For an alternating knot, it is proved that $r - s$ is bounded by the number of double points in any alternating projection of $K$. This upper bound is attained by many alternating knots, including $2$-bridge knots, and therefore, for these knots, $r - s$ gives the minimum number of double points among all alternating projections of $K$. If $K$ is a special alternating knot, it is also proved that ${a_s} = 1$ and $s$ is equal to the genus of $K$. Similar results hold for links.References
- Carl Bankwitz, Über die Torsionszahlen der alternierenden Knoten, Math. Ann. 103 (1930), no. 1, 145–161 (German). MR 1512619, DOI 10.1007/BF01455692
- Kunio Murasugi, On the genus of the alternating knot. I, II, J. Math. Soc. Japan 10 (1958), 94–105, 235–248. MR 99664, DOI 10.2969/jmsj/01010094
- Richard H. Crowell, Nonalternating links, Illinois J. Math. 3 (1959), 101–120. MR 99667
- David Gabai, The Murasugi sum is a natural geometric operation, Low-dimensional topology (San Francisco, Calif., 1981) Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, pp. 131–143. MR 718138, DOI 10.1090/conm/020/718138
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2 V. F. R. Jones and J. Birman, Seminar notes.
- Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133 W. B. R. Lickorish and K. C. Millett, Polynomial invariant of oriented links (to appear).
- H. R. Morton, The Jones polynomial for unoriented links, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 145, 55–60. MR 830630, DOI 10.1093/qmath/37.1.55
- Hitoshi Murakami, A recursive calculation of the Arf invariant of a link, J. Math. Soc. Japan 38 (1986), no. 2, 335–338. MR 833206, DOI 10.2969/jmsj/03820335
- Kunio Murasugi, On the genus of the alternating knot. I, II, J. Math. Soc. Japan 10 (1958), 94–105, 235–248. MR 99664, DOI 10.2969/jmsj/01010094
- Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, DOI 10.1090/S0002-9947-1965-0171275-5
- Kunio Murasugi, On the Alexander polynomial of alternating algebraic knots, J. Austral. Math. Soc. Ser. A 39 (1985), no. 3, 317–333. MR 802722 —, Jones polynomials and classical conjectures in knot theory (to appear).
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 147-174
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831194-9
- MathSciNet review: 831194