Weighted and vector-valued inequalities for potential operators
HTML articles powered by AMS MathViewer
- by Francisco J. Ruiz Blasco and José L. Torrea Hernández
- Trans. Amer. Math. Soc. 295 (1986), 213-232
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831197-4
- PDF | Request permission
Abstract:
In this paper we develop some aspect of a general theory parallel to the Calderón-Zygmund theory for operator valued kernels, where the operators considered map functions defined on ${R^n}$ into functions defined on $R_ + ^{n + 1} = {R^n} \times [0,\infty )$. In particular, we apply the obtained results to get vector-valued inequalities for the Poisson integral and fractional integrals. Some weighted norm inequalities are also considered for fractional integrals.References
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Lars Inge Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510. MR 312232, DOI 10.1090/S0002-9939-1972-0312232-4
- H. P. Heinig and R. Johnson, Weighted norm inequalities for $L^{r}$-valued integral operators and applications, Math. Nachr. 107 (1982), 161–174. MR 695744, DOI 10.1002/mana.19821070113
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI 10.1090/S0002-9947-1974-0340523-6
- José L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 86–101. MR 654181 J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón- Zygmund theory for operator-valued kernels, Advances in Math. (to appear).
- Francisco J. Ruiz, A unified approach to Carleson measures and $A_p$ weights, Pacific J. Math. 117 (1985), no. 2, 397–404. MR 779929
- Francisco J. Ruiz and José L. Torrea, A unified approach to Carleson measures and $A_p$ weights. II, Pacific J. Math. 120 (1985), no. 1, 189–197. MR 808937
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
- G. V. Welland, Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143–148. MR 369641, DOI 10.1090/S0002-9939-1975-0369641-X
- Felipe Zo, A note on approximation of the identity, Studia Math. 55 (1976), no. 2, 111–122. MR 423013, DOI 10.4064/sm-55-2-111-122
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- J. Schwartz, A remark on inequalities of Calderon-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785–799. MR 143031, DOI 10.1002/cpa.3160140410
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 213-232
- MSC: Primary 42B20; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831197-4
- MathSciNet review: 831197