Embedding strictly pseudoconvex domains into balls
HTML articles powered by AMS MathViewer
- by Franc Forstnerič
- Trans. Amer. Math. Soc. 295 (1986), 347-368
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831203-7
- PDF | Request permission
Abstract:
Every relatively compact strictly pseudoconvex domain $D$ with ${{\mathbf {C}}^2}$ boundary in a Stein manifold can be embedded as a closed complex submanifold of a finite dimensional ball. However, for each $n \geq 2$ there exist bounded strictly pseudoconvex domains $D$ in ${\mathbb {C}^n}$ with real-analytic boundary such that no proper holomorphic map from $D$ into any finite dimensional ball extends smoothly to $\overline D$.References
- Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in $\textbf {C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322. MR 684898, DOI 10.1090/S0273-0979-1983-15087-5
- Eric Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 157–175. MR 733691, DOI 10.1090/S0273-0979-1984-15235-2
- E. Bedford, S. Bell, and D. Catlin, Boundary behavior of proper holomorphic mappings, Michigan Math. J. 30 (1983), no. 1, 107–111. MR 694934
- D. Burns Jr., S. Shnider, and R. O. Wells Jr., Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237–253. MR 481119, DOI 10.1007/BF01390277
- Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99 (French). MR 94830
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- James J. Faran V, The nonimbeddability of real hypersurfaces in spheres, Proc. Amer. Math. Soc. 103 (1988), no. 3, 902–904. MR 947678, DOI 10.1090/S0002-9939-1988-0947678-6
- John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529–569. MR 422683, DOI 10.2307/2373900 F. Forstnerič, Proper holomorphic mappings in several complex variables, Ph.D. dissertation, University of Washington, 1985.
- Josip Globevnik and Edgar Lee Stout, The ends of varieties, Amer. J. Math. 108 (1986), no. 6, 1355–1410. MR 868895, DOI 10.2307/2374529
- H. Grauert and R. Remmert, Analytische Stellenalgebren, Die Grundlehren der mathematischen Wissenschaften, Band 176, Springer-Verlag, Berlin-New York, 1971 (German). Unter Mitarbeit von O. Riemenschneider. MR 0316742
- Monique Hakim and Nessim Sibony, Fonctions holomorphes bornées sur la boule unité de $\textbf {C}^{n}$, Invent. Math. 67 (1982), no. 2, 213–222 (French). MR 665153, DOI 10.1007/BF01393814 G. M. Khenkin and E. M. Čirka, Boundary properties of holomorphic functions of several complex variables, Sovrem. Probl. Mat. 4 (1975), 13-142; English transl., Soviet Math. J. 5 (1976), 612-687.
- László Lempert, Imbedding strictly pseudoconvex domains into a ball, Amer. J. Math. 104 (1982), no. 4, 901–904. MR 667541, DOI 10.2307/2374211 E. Løw, The unit ball is a closed complex submanifold of a polydisk (preprint). —, Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls (preprint).
- Monique Hakim and Nessim Sibony, Fonctions holomorphes bornées sur la boule unité de $\textbf {C}^{n}$, Invent. Math. 67 (1982), no. 2, 213–222 (French). MR 665153, DOI 10.1007/BF01393814
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR 0251745
- S. I. Pinchuk, Analytic continuation of holomorphic mappings and problems of holomorphic classification of multidimensional domains, Mat. Zametki 33 (1983), no. 2, 301–314, 320 (Russian). MR 693441 H. Poincaré, Les fonctions analytiques de deux varibles et la représentation conforme, Rend. Circ. Mat. Palermo (1907), 185-220.
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 347-368
- MSC: Primary 32H99; Secondary 32F15, 32F25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831203-7
- MathSciNet review: 831203