## Splitting strongly almost disjoint families

HTML articles powered by AMS MathViewer

- by A. Hajnal, I. Juhász and S. Shelah PDF
- Trans. Amer. Math. Soc.
**295**(1986), 369-387 Request permission

## Abstract:

We say that a family $\mathcal {A} \subset {[\lambda ]^\kappa }$ is strongly almost disjoint if something more than just $|A \cap B| < \kappa$, e.g. that $|A \cap B| < \sigma < \kappa$, is assumed for $A$, $B \in \mathcal {A}$. We formulate conditions under which every such strongly a.d. family is "essentially disjoint", i.e. for each $A \in \mathcal {A}$ there is $F(A) \in {[A]^{ < \kappa }}$ so that $\{ A\backslash F(A):A \in \mathcal {A}\}$ is disjoint. On the other hand, we get from a supercompact cardinal the consistency of ${\text {GCH}}$ plus the existence of a family $\mathcal {A} \subset {[{\omega _{\omega + 1}}]^{{\omega _1}}}$ whose elements have pairwise finite intersections and such that it does not even have property $B$. This solves an old problem raised in [**4**]. The same example is also used to produce a graph of chromatic number ${\omega _2}$ on ${\omega _{\omega + 1}}$ that does not contain $[\omega ,\omega ]$, answering a problem from [

**5**]. We also have applications of our results to "splitting" certain families of closed subsets of a topological space. These improve results from [${\mathbf {3}},{\mathbf {12}}$ and ${\mathbf {13}}$].

## References

- James E. Baumgartner,
*Almost-disjoint sets, the dense set problem and the partition calculus*, Ann. Math. Logic**9**(1976), no. 4, 401–439. MR**401472**, DOI 10.1016/0003-4843(76)90018-8
F. Bernstein, - Ju. Bregman, B. Šapirovskij, and A. Šostak,
*On partition of topological spaces*, Časopis Pěst. Mat.**109**(1984), no. 1, 27–53 (English, with Russian summary). MR**741207** - P. Erdős and A. Hajnal,
*On a property of families of sets*, Acta Math. Acad. Sci. Hungar.**12**(1961), 87–123 (English, with Russian summary). MR**150047**, DOI 10.1007/BF02066676 - P. Erdős and A. Hajnal,
*On chromatic number of graphs and set-systems*, Acta Math. Acad. Sci. Hungar.**17**(1966), 61–99. MR**193025**, DOI 10.1007/BF02020444 - A. Hajnal and I. Juhász,
*Remarks on the cardinality of compact spaces and their Lindelöf subspaces*, Proc. Amer. Math. Soc.**59**(1976), no. 1, 146–148. MR**423283**, DOI 10.1090/S0002-9939-1976-0423283-7 - P. Komjáth,
*Families close to disjoint ones*, Acta Math. Hungar.**43**(1984), no. 3-4, 199–207. MR**733854**, DOI 10.1007/BF01958019
E. W. Miller, - Saharon Shelah,
*On successors of singular cardinals*, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 357–380. MR**567680** - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955** - Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori,
*Strong axioms of infinity and elementary embeddings*, Ann. Math. Logic**13**(1978), no. 1, 73–116. MR**482431**, DOI 10.1016/0003-4843(78)90031-1 - W. Weiss,
*Partitioning topological spaces*, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1249–1255. MR**588871** - Kurt Wolfsdorf,
*Färbungen großer Würfel mit bunten Wegen*, Arch. Math. (Basel)**40**(1983), no. 6, 569–576 (German). MR**710023**, DOI 10.1007/BF01192825

*Zur Theorie der Trigonometrischen Reihen*, Leipziger Berichte

**60**(1908), 325-338.

*On the property of families of sets*, Compt. Rendus Varsovie

**30**(1937), 31-38.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**295**(1986), 369-387 - MSC: Primary 03E05; Secondary 03E35, 03E55, 04A20, 54A25, 54A35
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831204-9
- MathSciNet review: 831204