Splitting strongly almost disjoint families
HTML articles powered by AMS MathViewer
- by A. Hajnal, I. Juhász and S. Shelah
- Trans. Amer. Math. Soc. 295 (1986), 369-387
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831204-9
- PDF | Request permission
Abstract:
We say that a family $\mathcal {A} \subset {[\lambda ]^\kappa }$ is strongly almost disjoint if something more than just $|A \cap B| < \kappa$, e.g. that $|A \cap B| < \sigma < \kappa$, is assumed for $A$, $B \in \mathcal {A}$. We formulate conditions under which every such strongly a.d. family is "essentially disjoint", i.e. for each $A \in \mathcal {A}$ there is $F(A) \in {[A]^{ < \kappa }}$ so that $\{ A\backslash F(A):A \in \mathcal {A}\}$ is disjoint. On the other hand, we get from a supercompact cardinal the consistency of ${\text {GCH}}$ plus the existence of a family $\mathcal {A} \subset {[{\omega _{\omega + 1}}]^{{\omega _1}}}$ whose elements have pairwise finite intersections and such that it does not even have property $B$. This solves an old problem raised in [4]. The same example is also used to produce a graph of chromatic number ${\omega _2}$ on ${\omega _{\omega + 1}}$ that does not contain $[\omega ,\omega ]$, answering a problem from [5]. We also have applications of our results to "splitting" certain families of closed subsets of a topological space. These improve results from [${\mathbf {3}},{\mathbf {12}}$ and ${\mathbf {13}}$].References
- James E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 9 (1976), no. 4, 401–439. MR 401472, DOI 10.1016/0003-4843(76)90018-8 F. Bernstein, Zur Theorie der Trigonometrischen Reihen, Leipziger Berichte 60 (1908), 325-338.
- Ju. Bregman, B. Šapirovskij, and A. Šostak, On partition of topological spaces, Časopis Pěst. Mat. 109 (1984), no. 1, 27–53 (English, with Russian summary). MR 741207
- P. Erdős and A. Hajnal, On a property of families of sets, Acta Math. Acad. Sci. Hungar. 12 (1961), 87–123 (English, with Russian summary). MR 150047, DOI 10.1007/BF02066676
- P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61–99. MR 193025, DOI 10.1007/BF02020444
- A. Hajnal and I. Juhász, Remarks on the cardinality of compact spaces and their Lindelöf subspaces, Proc. Amer. Math. Soc. 59 (1976), no. 1, 146–148. MR 423283, DOI 10.1090/S0002-9939-1976-0423283-7
- P. Komjáth, Families close to disjoint ones, Acta Math. Hungar. 43 (1984), no. 3-4, 199–207. MR 733854, DOI 10.1007/BF01958019 E. W. Miller, On the property of families of sets, Compt. Rendus Varsovie 30 (1937), 31-38.
- Saharon Shelah, On successors of singular cardinals, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 357–380. MR 567680
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73–116. MR 482431, DOI 10.1016/0003-4843(78)90031-1
- W. Weiss, Partitioning topological spaces, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1249–1255. MR 588871
- Kurt Wolfsdorf, Färbungen großer Würfel mit bunten Wegen, Arch. Math. (Basel) 40 (1983), no. 6, 569–576 (German). MR 710023, DOI 10.1007/BF01192825
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 369-387
- MSC: Primary 03E05; Secondary 03E35, 03E55, 04A20, 54A25, 54A35
- DOI: https://doi.org/10.1090/S0002-9947-1986-0831204-9
- MathSciNet review: 831204