Definable sets in ordered structures. I
HTML articles powered by AMS MathViewer
- by Anand Pillay and Charles Steinhorn
- Trans. Amer. Math. Soc. 295 (1986), 565-592
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833697-X
- PDF | Request permission
Abstract:
This paper introduces and begins the study of a well-behaved class of linearly ordered structures, the $\mathcal {O}$-minimal structures. The definition of this class and the corresponding class of theories, the strongly $\mathcal {O}$-minimal theories, is made in analogy with the notions from stability theory of minimal structures and strongly minimal theories. Theorems 2.1 and 2.3, respectively, provide characterizations of $\mathcal {O}$-minimal ordered groups and rings. Several other simple results are collected in $\S 3$. The primary tool in the analysis of $\mathcal {O}$-minimal structures is a strong analogue of "forking symmetry," given by Theorem 4.2. This result states that any (parametrically) definable unary function in an $\mathcal {O}$-minimal structure is piecewise either constant or an order-preserving or reversing bijection of intervals. The results that follow include the existence and uniqueness of prime models over sets (Theorem 5.1) and a characterization of all ${\aleph _0}$-categorical $\mathcal {O}$-minimal structures (Theorem 6.1).References
- John T. Baldwin, Fundamentals of stability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1988. MR 918762, DOI 10.1007/978-3-662-07330-8
- J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79–96. MR 286642, DOI 10.2307/2271517
- Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR 0530404 L. van den Dries, Remarks on Tarski’s problem concerning $(R, + , \cdot ,\exp )$, manuscript, 1983.
- P. Erdös, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. (2) 61 (1955), 542–554. MR 69161, DOI 10.2307/1969812
- S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57–103. MR 108455, DOI 10.4064/fm-47-1-57-103 F. Gausdorff, Grundzuge der Mengenlehre, Leipzig, 1914.
- C. H. Langford, Some theorems on deducibility, Ann. of Math. (2) 28 (1926/27), no. 1-4, 16–40. MR 1502760, DOI 10.2307/1968352
- Angus Macintyre, On $\omega _{1}$-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1–25. (errata insert). MR 290954, DOI 10.4064/fm-71-1-1-25
- Anand Pillay, An introduction to stability theory, Oxford Logic Guides, vol. 8, The Clarendon Press, Oxford University Press, New York, 1983. MR 719195
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 159–162. MR 741730, DOI 10.1090/S0273-0979-1984-15249-2
- Klaus-Peter Podewski, Minimale Ringe, Math.-Phys. Semesterber. 22 (1975), no. 2, 193–197 (German). MR 392962
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Joachim Reineke, Minimale Gruppen, Z. Math. Logik Grundlagen Math. 21 (1975), no. 4, 357–359 (German). MR 379179, DOI 10.1002/malq.19750210145
- Abraham Robinson, Complete theories, North-Holland Publishing Co., Amsterdam, 1956. MR 0075897
- J. C. C. McKinsey and Alfred Tarski, Some theorems about the sentential calculi of Lewis and Heyting, J. Symbolic Logic 13 (1948), 1–15. MR 24396, DOI 10.2307/2268135
- Saharon Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107–113. MR 316239, DOI 10.2307/2272553
- Gerald E. Sacks, Saturated model theory, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0398817
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 565-592
- MSC: Primary 03C45; Secondary 03C40, 03C50, 06F99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833697-X
- MathSciNet review: 833697