Definable sets in ordered structures. II
HTML articles powered by AMS MathViewer
- by Julia F. Knight, Anand Pillay and Charles Steinhorn
- Trans. Amer. Math. Soc. 295 (1986), 593-605
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833698-1
- PDF | Request permission
Abstract:
It is proved that any $0$-minimal structure $M$ (in which the underlying order is dense) is strongly $0$-minimal (namely, every $N$ elementarily equivalent to $M$ is $0$-minimal). It is simultaneously proved that if $M$ is $0$-minimal, then every definable set of $n$-tuples of $M$ has finitely many "definably connected components."References
- Gregory W. Brumfiel, Partially ordered rings and semi-algebraic geometry, London Mathematical Society Lecture Note Series, vol. 37, Cambridge University Press, Cambridge-New York, 1979. MR 553280
- George E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975), Lecture Notes in Comput. Sci., Vol. 33, Springer, Berlin, 1975, pp.ย 134โ183. MR 0403962
- Lou van den Dries, Remarks on Tarskiโs problem concerning $(\textbf {R},\,+,\,\cdot ,\,\textrm {exp})$, Logic colloquium โ82 (Florence, 1982) Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp.ย 97โ121. MR 762106, DOI 10.1016/S0049-237X(08)71811-1
- John N. Mather, Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp.ย 195โ232. MR 0368064
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no.ย 1, 159โ162. MR 741730, DOI 10.1090/S0273-0979-1984-15249-2
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no.ย 2, 565โ592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley-Los Angeles, Calif., 1951. 2nd ed. MR 0044472
- Hassler Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545โ556. MR 95844, DOI 10.2307/1969908
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 593-605
- MSC: Primary 03C45; Secondary 03C40, 03C50, 06F99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833698-1
- MathSciNet review: 833698