Congruences on regular semigroups
HTML articles powered by AMS MathViewer
- by Francis Pastijn and Mario Petrich
- Trans. Amer. Math. Soc. 295 (1986), 607-633
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833699-3
- PDF | Request permission
Abstract:
Let $S$ be a regular semigroup and let $\rho$ be a congruence relation on $S$. The kernel of $\rho$, in notation $\ker \rho$, is the union of the idempotent $\rho$-classes. The trace of $\rho$, in notation $\operatorname {tr} \rho$, is the restriction of $\rho$ to the set of idempotents of $S$. The pair $(\ker \rho ,\operatorname {tr} \rho )$ is said to be the congruence pair associated with $\rho$. Congruence pairs can be characterized abstractly, and it turns out that a congruence is uniquely determined by its associated congruence pair. The triple $((\rho \vee \mathcal {L})/\mathcal {L},\ker \rho ,(\rho \vee \mathcal {R})/\mathcal {R})$ is said to be the congruence triple associated with $\rho$. Congruence triples can be characterized abstractly and again a congruence relation is uniquely determined by its associated triple. The consideration of the parameters which appear in the above-mentioned representations of congruence relations gives insight into the structure of the congruence lattice of $S$. For congruence relations $\rho$ and $\theta$, put $\rho {T_l}\theta \;[\rho {T_r}\theta ,\rho T\theta ]$ if and only if $\rho \vee \mathcal {L} = \theta \vee \mathcal {L}\;[\rho \vee \mathcal {R} = \theta \vee \mathcal {R},\operatorname {tr}\rho = \operatorname {tr}\theta ]$. Then ${T_l},{T_r}$ and $T$ are complete congruences on the congruence lattice of $S$ and $T = {T_l} \cap {T_r}$.References
- Garrett Birkhoff, Lattice Theory, American Mathematical Society, New York, 1940. MR 0001959 A. H. Clifford, and G. B. Preston, The algebraic theory of semigroups, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., Vol. I, 1961, Vol. II, 1967.
- Ruth Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (1979), no. 4, 373–377. MR 532428, DOI 10.1007/BF02194336
- T. E. Hall, On the lattice of congruences on a regular semigroup, Bull. Austral. Math. Soc. 1 (1969), 231–235. MR 257254, DOI 10.1017/S0004972700041472
- J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs, No. 7, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0466355
- Gérard Lallement, Demi-groupes réguliers, Ann. Mat. Pura Appl. (4) 77 (1967), 47–129 (French). MR 225915, DOI 10.1007/BF02416940
- W. D. Munn, Decompositions of the congruence lattice of a semigroup, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 2, 193–198. MR 597123, DOI 10.1017/S0013091500003060
- K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), no. 224, vii+119. MR 546362, DOI 10.1090/memo/0224
- F. J. Pastijn and P. G. Trotter, Lattices of completely regular semigroup varieties, Pacific J. Math. 119 (1985), no. 1, 191–214. MR 797024
- Mario Petrich, Inverse semigroups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 752899
- N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349–360. MR 219646
- H. E. Scheiblich, Certain congruence and quotient lattices related to completely $0$-simple and primitive regular semigroups, Glasgow Math. J. 10 (1969), 21–24. MR 244425, DOI 10.1017/S0017089500000483
- H. E. Scheiblich, Kernels of inverse semigroup homomorphisms, J. Austral. Math. Soc. 18 (1974), 289–292. MR 0360887
- P. G. Trotter, Normal partitions of idempotents of regular semigroups, J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 110–114. MR 510594
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 607-633
- MSC: Primary 20M10; Secondary 08A30, 20M17
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833699-3
- MathSciNet review: 833699