## Boundary behavior of positive solutions of the heat equation on a semi-infinite slab

HTML articles powered by AMS MathViewer

- by B. A. Mair PDF
- Trans. Amer. Math. Soc.
**295**(1986), 687-697 Request permission

## Abstract:

In this paper, the abstract Fatou-Naim-Doob theorem is used to investigate the boundary behavior of positive solutions of the heat equation on the semi-infinite slab $X = {{\mathbf {R}}^{n - 1}} \times {{\mathbf {R}}_ + } \times (0,T)$. The concept of semifine limit is introduced, and relationships are obtained between fine, semifine, parabolic, one-sided parabolic and two-sided parabolic limits at points on the parabolic boundary of $X$. A Carleson-Calderón-type local Fatou theorem is also obtained for solutions on a union of two-sided parabolic regions.## References

- Heinz Bauer,
*Harmonische Räume und ihre Potentialtheorie*, Lecture Notes in Mathematics, No. 22, Springer-Verlag, Berlin-New York, 1966 (German). Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung. MR**0210916** - M. Brelot and J. L. Doob,
*Limites angulaires et limites fines*, Ann. Inst. Fourier (Grenoble)**13**(1963), no. fasc. 2, 395–415 (French). MR**196107** - A. P. Calderón,
*On the behaviour of harmonic functions at the boundary*, Trans. Amer. Math. Soc.**68**(1950), 47–54. MR**32863**, DOI 10.1090/S0002-9947-1950-0032863-9 - Lennart Carleson,
*On the existence of boundary values for harmonic functions in several variables*, Ark. Mat.**4**(1962), 393–399 (1962). MR**159013**, DOI 10.1007/BF02591620
E. B. Fabes, N. Garaofalo and S. Salsa, - B. Frank Jones Jr. and C. C. Tu,
*Non-tangential limits for a solution of the heat equation in a two-dimensional $\textrm {Lip}_{\alpha }$ region*, Duke Math. J.**37**(1970), 243–254. MR**259388** - Robert Kaufman and Jang Mei Wu,
*Parabolic potential theory*, J. Differential Equations**43**(1982), no. 2, 204–234. MR**647063**, DOI 10.1016/0022-0396(82)90091-2 - John T. Kemper,
*Temperatures in several variables: Kernel functions, representations, and parabolic boundary values*, Trans. Amer. Math. Soc.**167**(1972), 243–262. MR**294903**, DOI 10.1090/S0002-9947-1972-0294903-6 - Adam Korányi and J. C. Taylor,
*Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation*, Illinois J. Math.**27**(1983), no. 1, 77–93. MR**684542** - B. A. Mair,
*Fine and parabolic limits for solutions of second-order linear parabolic equations on an infinite slab*, Trans. Amer. Math. Soc.**284**(1984), no. 2, 583–599. MR**743734**, DOI 10.1090/S0002-9947-1984-0743734-7 - Bernard Mair and J. C. Taylor,
*Integral representation of positive solutions of the heat equation*, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 419–433. MR**890370**, DOI 10.1007/BFb0100123 - Jürgen Moser,
*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**159139**, DOI 10.1002/cpa.3160170106 - J. C. Taylor,
*An elementary proof of the theorem of Fatou-Naïm-Doob*, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 153–163. MR**670103** - C. C. Tu,
*Non-tangential limits of a solution of a boundary-value problem for the heat equation*, Math. Systems Theory**3**(1969), 130–138. MR**249840**, DOI 10.1007/BF01746519 - D. V. Widder,
*The heat equation*, Pure and Applied Mathematics, Vol. 67, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0466967**

*A backward Harnack inequality and Fatou theorem for non-negative solutions of parabolic equations*, Univ. of Minnesota Math. Rep. 83-117.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**295**(1986), 687-697 - MSC: Primary 35K20; Secondary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833703-2
- MathSciNet review: 833703