Connected locally connected toposes are path-connected
HTML articles powered by AMS MathViewer
- by I. Moerdijk and G. C. Wraith
- Trans. Amer. Math. Soc. 295 (1986), 849-859
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833712-3
- PDF | Request permission
Abstract:
A conjecture of A. Joyal is proved, which states that, in contrast to topological spaces, toposes which are connected and locally connected are also path-connected. The reason for this phenomenon is the triviality of cardinality considerations in the topos-theoretic setting; any inhabited object pulls back to an enumerable object under some open surjective geometric morphism. This result points towards a homotopy theory for toposes.References
- Michael Barr and Robert Paré, Molecular toposes, J. Pure Appl. Algebra 17 (1980), no. 2, 127–152. MR 567064, DOI 10.1016/0022-4049(80)90080-8
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- M. P. Fourman and R. J. Grayson, Formal spaces, The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981) Stud. Logic Found. Math., vol. 110, North-Holland, Amsterdam, 1982, pp. 107–122. MR 717242, DOI 10.1016/S0049-237X(09)70126-0
- Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653 Hyland, Function spaces in the category of locales, Continuous Lattices, Lecture Notes in Math., vol. 871, Springer, 1981.
- John R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5–32. MR 358725, DOI 10.7146/math.scand.a-11409
- Peter T. Johnstone, Open maps of toposes, Manuscripta Math. 31 (1980), no. 1-3, 217–247. MR 576498, DOI 10.1007/BF01303275
- Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- Peter T. Johnstone, How general is a generalized space?, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 77–111. MR 787824
- Peter Johnstone and André Joyal, Continuous categories and exponentiable toposes, J. Pure Appl. Algebra 25 (1982), no. 3, 255–296. MR 666021, DOI 10.1016/0022-4049(82)90083-4
- André Joyal and Myles Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71. MR 756176, DOI 10.1090/memo/0309
- Karl Menger, Über die Dimension von Punktmengen III, Monatsh. Math. Phys. 36 (1929), no. 1, 193–218 (German). Zur Begründung einer axiomatischen Theorie der Dimension. MR 1549681, DOI 10.1007/BF02307613
- Ieke Moerdijk, Continuous fibrations and inverse limits of toposes, Compositio Math. 58 (1986), no. 1, 45–72. MR 834047 —, Path-lifting for Grothendieck toposes (preprint 1985) (submitted).
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Lynn Arthur Steen and J. Arthur Seebach Jr., Counterexamples in topology, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. MR 507446
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 295 (1986), 849-859
- MSC: Primary 18B25; Secondary 54D05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0833712-3
- MathSciNet review: 833712