Factorial property of a ring of automorphic forms
HTML articles powered by AMS MathViewer
- by Shigeaki Tsuyumine
- Trans. Amer. Math. Soc. 296 (1986), 111-123
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837801-9
- PDF | Request permission
Abstract:
A ring of automorphic forms is shown to be factorial under some conditions on the domain and on the Picard group. As an application, we show that any divisor on the moduli space ${\mathfrak {M}_g}$ of curves of genus $g \geqslant 3$ is defined by a single element, and that the Satake compactification of ${\mathfrak {M}_g}$ is written as a projective spectrum of a factorial graded ring. We find a single element which defines the closure of ${\mathfrak {M}\prime _4}$ in ${\mathfrak {M}_4}$ where ${\mathfrak {M}\prime _4}$ is the moduli of curves of genus four whose canonical curves are exhibited as complete intersections of quadric cones and of cubics in ${\mathbb {P}^3}$.References
- W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. MR 216035, DOI 10.2307/1970457
- Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- F. Catanese, On the rationality of certain moduli spaces related to curves of genus $4$, Algebraic geometry (Ann Arbor, Mich., 1981) Lecture Notes in Math., vol. 1008, Springer, Berlin, 1983, pp. 30–50. MR 723706, DOI 10.1007/BFb0065697
- Ulrich Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen, Math. Ann. 148 (1962), 257–307 (German). MR 145105, DOI 10.1007/BF01451138
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- R. Endres, Multiplikatorsysteme der symplektischen Thetagruppe, Monatsh. Math. 94 (1982), no. 4, 281–297 (German, with English summary). MR 685375, DOI 10.1007/BF01667383 J. Forgaty, Invariant theorey, Math. Lecture Note Series, Benjamin, New York, 1969.
- E. Freitag, Stabile Modulformen, Math. Ann. 230 (1977), no. 3, 197–211 (German). MR 481144, DOI 10.1007/BF01367576
- Eberhard Freitag, Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math. (Basel) 40 (1983), no. 3, 255–259 (German). MR 701272, DOI 10.1007/BF01192778
- Eberhard Freitag, Holomorphic tensors on subvarieties of the Siegel modular variety, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 93–113. MR 763011
- John Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221–239. MR 700769, DOI 10.1007/BF01389321
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
- Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817–855. MR 229643, DOI 10.2307/2373243
- Jun-ichi Igusa, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 531–545 (1982). MR 656035
- Hans Maass, Die Multiplikatorsysteme zur Siegelschen Modulgruppe, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1964 (1964), 125–135 (German). MR 168659
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Yozô Matsushima, On Betti numbers of compact, locally sysmmetric Riemannian manifolds, Osaka Math. J. 14 (1962), 1–20. MR 141138
- David Mumford, Abelian quotients of the Teichmüller modular group, J. Analyse Math. 18 (1967), 227–244. MR 219543, DOI 10.1007/BF02798046
- Jerome Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347–350. MR 494115, DOI 10.1090/S0002-9939-1978-0494115-8
- Pierre Samuel, Sur les anneaux factoriels, Bull. Soc. Math. France 89 (1961), 155–173 (French). MR 139614 F. Schottky, Zur Theorie der Abelschen Funktionen von vier Variablen, J. Reine Angew. Math. 102 (1888), 304-352.
- Jean-Pierre Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 363–374 (French). MR 212214
- Yum-tong Siu, Extending coherent analytic sheaves, Ann. of Math. (2) 90 (1969), 108–143. MR 245837, DOI 10.2307/1970684 H. Weber, Theorie der Abel’sehen Funktionen vom Geschlecht $3$, Berlin, 1876.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 111-123
- MSC: Primary 11F03; Secondary 14H15, 32N05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837801-9
- MathSciNet review: 837801